【机器学习】五、贝叶斯分类

我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。

条件概率是朴素贝叶斯模型的基础

假设,你的xx公司正在面临着用户流失的压力。虽然,你能计算用户整体流失的概率(流失用户数/用户总数)。但这个数字并没有多大意义,因为资源是有限的,利用这个数字你只能撒胡椒面似的把钱撒在所有用户上,显然不经济。你非常想根据用户的某种行为,精确地估计一个用户流失的概率,若这个概率超过某个阀值,再触发用户挽留机制。这样能把钱花到最需要花的地方。

你搜遍脑子里的数据分析方法,终于,一个250年前的人名在脑中闪现。就是“贝叶斯Bayes”。你取得了近一个月的流失用户数、流失用户中未读消息大于5条的人数、近一个月的活跃用户数及活跃用户中未读消息大于5条的人数。在此基础上,你获得了一个“一旦用户未读消息大于5条,他流失的概率高达%”的精确结论。怎么实现这个计算呢?先别着急,为了解释清楚贝叶斯模型,我们先定义一些名词。

  • 概率(Probability)——0和1之间的一个数字,表示一个特定结果发生的可能性。比如投资硬币,“正面朝上”这个特定结果发生的可能性为0.5,这个0.5就是概率。换一种说法,计算样本数据中出现该结果次数的百分比。即你投一百次硬币,正面朝上的次数基本上是50次。

  • 几率(Odds)——某一特定结果发生与不发生的概率比。如果你明天电梯上遇上你暗恋的女孩的概率是0.1,那么遇不上她的概率就是0.9,那么遇上暗恋女孩的几率就是1/9,几率的取值范围是0到无穷大。

  • 似然(Likelihood)——两个相关的条件概率之比,即给定B发生的情况下,某一特定结果A发生的概率和给定B不发生的情况下A发生的概率之比。另一种表达方式是,给定B的情况下A发生的几率和A的整体几率之比。两个计算方式是等价的。

Clipboard Image.png

因为上面在似然当中提到了条件概率,那么我们有必要将什么是条件概率做更详尽的阐述。

如上面的韦恩图,我们用矩形表示一个样本空间,代表随机事件发生的一切可能结果。的在统计学中,我们用符号P表示概率,A事件发生的概率表示为P(A)。两个事件间的概率表达实际上相当繁琐,我们只介绍本书中用得着的关系:

  1. A事件与B事件同时发生的概率表示为P(A∩B),或简写为P(AB)即两个圆圈重叠的部分。

  2. A不发生的概率为1-P(A),写为P(~A),即矩形中除了圆圈A以外的其他部分。

  3. A或者B至少有一个发生的概率表示为P(A∪B),即圆圈A与圆圈B共同覆盖的区域。

  4. 在B事件发生的基础上发生A的概率表示为P(A|B),这便是我们前文所提到的条件概率,图形上它有AB重合的面积比上B的面积。

回到我们的例子。以P(A)代表用户流失的概率,P(B)代表用户有5条以上未读信息的概率,P(B|A)代表用户流失的前提下未读信息大于5条的概率。我们要求未读信息大于5条的用户流失的概率,即P(A|B),贝叶斯公式告诉我们: 

P(A|B)=P(AB)/P(B)

              =P(B|A)*P(A)/P(B)

从公式中可知,如果要计算B条件下A发生的概率,只需要计算出后面等式的三个部分,B事件的概率(P(B)),是B的先验概率、A属于某类的概率(P(A)),是A的先验概率、以及已知A的某个分类下,事件B的概率(P(B|A)),是后验概率

如果要确定某个样本归属于哪一类,则需要计算出归属不同类的概率,再从中挑选出最大的概率

我们把上面的贝叶斯公式写出这样,也许你能更好的理解:

MAX(P(Ai|B))=MAX(P(B|Ai)*P(Ai)/P(B))

而这个公式告诉我们,需要计算最大的后验概率,只需要计算出分子的最大值即可,而不同水平的概率P(C)非常容易获得,故难点就在于P(X|C)的概率计算。而问题的解决,正是聪明之处,即贝叶斯假设变量X间是条件独立的,故而P(X|C)的概率就可以计算为:

P(B|Ai) =P(B1/Ai)*P(B2/Ai)*P(B3/Ai)*.....*P(Bn/Ai) 

如下图,由这个公式我们就能轻松计算出,在观察到某用户的未读信息大于5条时,他流失的概率为80%。80%的数值比原来的30%真是靠谱太多了。

Clipboard Image.png

当然,现实情况并不会像这个例子这么理想化。大家会问,凭什么你就会想到用“未读消息大于5条”来作为条件概率?我只能说,现实情况中,你可能要找上一堆觉得能够凸显用户流失的行为,然后一一做贝叶斯规则,来测算他们是否能显著识别用户流失。寻找这个字段的效率,取决于你对业务的理解程度和直觉的敏锐性。另外,你还需要定义“流失”和“活跃”,还需要定义贝叶斯规则计算的基础样本,这决定了结果的精度。

  • 利用全概率公式的一个例子

朴素贝叶斯的应用不止于此,我们再例举一个更复杂,但现实场景也更实际的案例。假设你为了肃清电商平台上的恶性商户(刷单、非法交易、恶性竞争等),委托算法团队开发了一个识别商家是否是恶性商户的模型M1。为什么要开发模型呢?因为之前识别恶性商家,你只能通过用户举报和人肉识别异常数据的方式,人力成本高且速率很慢。你指望有智能的算法来提高效率。

之前监察团队的成果告诉我们,目前平台上的恶性商户比率为0.2%,记为P(E),那么P(~E)就是99.8%。利用模型M1进行检测,你发现在监察团队已判定的恶性商户中,由模型M1所判定为阳性(恶性商户)的人数占比为90%,这是一个条件概率,表示为P(P|E)=90%;在监察团队判定为健康商户群体中,由模型M1判定为阳性的人数占比为8%,表示为P(P|~E)=8%。乍看之下,你是不是觉得这个模型的准确度不够呢?感觉对商户有8%的误杀,还有10%的漏判。其实不然,这个模型的结果不是你想当然的这么使用的 

这里,我们需要使用一个称为“全概率公式”的计算模型,来计算出在M1判别某个商户为恶性商户时,这个结果的可信度有多高。这正是贝叶斯模型的核心。当M1判别某个商户为恶性商户时,这个商户的确是恶性商户的概率由P(E|P)表示:

P(E|P)

=P(P|E)*P(E) (P(E)*P(P|E)+P(~E)*P(P|~E)) 

上面就是全概率公式。要知道判别为恶性商户的前提下,该商户实际为恶性商户的概率,需要由先前的恶性商户比率P(E),以判别的恶性商户中的结果为阳性的商户比率P(P|E),以判别为健康商户中的结果为阳性的比率P(P|~E),以判别商户中健康商户的比率P(~E)来共同决定。

P(E)     0.2%
P(P|E)  90%
P(~E)   99.8%
P(P|~E)  8%
P(E|P)= P(P|E)*P(E) / (P(E)*P(P|E)+P(~E)*P(P|~E))  2.2%

由上面的数字,带入全概率公式后,我们获得的结果为2.2%。也就是说,根据M1的判别为阳性的结果,某个商户实际为恶性商户的概率为2.2%,是不进行判别的0.2%的11倍。

你可能认为2.2%的概率并不算高。但实际情况下你应该这么思考:被M1模型判别为恶性商户,说明这家商户做出恶性行为的概率是一般商户的11倍,那么,就非常有必要用进一步的手段进行检查了。

恶性商户判别模型真正的使用逻辑应该是如下图所示。我们先用M1进行一轮判别,结果是阳性的商户,说明出现恶性行为的概率是一般商户的11倍,那么有必要用精度更高的方式进行判别,或者人工介入进行检查。精度更高的检查和人工介入,成本都是非常高的。因此M1模型的使用能够使我们的成本得到大幅节约。 

Clipboard Image.png 

贝叶斯模型在很多方面都有应用,我们熟知的领域就有垃圾邮件识别、文本的模糊匹配、欺诈判别、商品推荐等等。通过贝叶斯模型的阐述,大家应该有这样的一种体会:分析模型并不取决于多么复杂的数学公式,多么高级的软件工具,多么高深的算法组合;它们的原理往往是通俗易懂的,实现起来也没有多高的门槛。比如贝叶斯模型,用Excel的单元格和加减乘除的符号就能实现。所以,不要觉得数据分析建模有多遥远,其实就在你手边。

附:

朴素贝叶斯分类的工作流程

                                        3.png

 

 

 

 

 

 

 

 

 

 

 

朴素贝叶斯分类适用解决的问题

        在考虑一个结果的概率时候,要考虑众多的属性,贝叶斯算法利用所有可能的数据来进行修正预测,如果大量的特征产生的影响较小,放在一起,组合的影响较大,适合于朴素贝叶斯分类。

应用范围:

贝叶斯定理广泛应用于决策分析。先验概率经常是由决策者主观估计的。在选择最佳决策时,会在取得样本信息后计算后验概率以供决策者使用。

 

 

在R语言中,是如何实现朴素贝叶斯算法的落地的?

 

R语言中的klaR就提供了朴素贝叶斯算法实现的函数NaiveBayes,我们来看一下该函数的用法及参数含义:

NaiveBayes(formula, data, ..., subset, na.action= na.pass)

NaiveBayes(x, grouping, prior, usekernel= FALSE, fL = 0, ...)

formula指定参与模型计算的变量,以公式形式给出,类似于y=x1+x2+x3;

data用于指定需要分析的数据对象;

na.action指定缺失值的处理方法,默认情况下不将缺失值纳入模型计算,也不会发生报错信息,当设为“na.omit”时则会删除含有缺失值的样本;

x指定需要处理的数据,可以是数据框形式,也可以是矩阵形式;

grouping为每个观测样本指定所属类别;

prior可为各个类别指定先验概率,默认情况下用各个类别的样本比例作为先验概率;

usekernel指定密度估计的方法(在无法判断数据的分布时,采用密度密度估计方法),默认情况下使用正态分布密度估计,设为TRUE时,则使用核密度估计方法;

fL指定是否进行拉普拉斯修正,默认情况下不对数据进行修正,当数据量较小时,可以设置该参数为1,即进行拉普拉斯修正。

R语言实战

本次实战内容的数据来自于UCI机器学习网站,后文会给出数据集合源代码的链接。

# 下载并加载所需的应用包

if(!suppressWarnings(require(‘caret’))){
  install.packages(‘caret’)
  require(‘caret’)
}
if(!suppressWarnings(require(‘klaR’))){
  install.packages(‘klaR’)
  require(‘klaR’)
}
if(!suppressWarnings(require(‘pROC’))){
  install.packages(‘pROC’)
  require(‘pROC’)
}
# 读取蘑菇数据集
mydata <- read.csv(file = file.choose())
# 简单的了解一下数据
str(mydata)
summary(mydata)

image.png

该数据集中包含了8124个样本和22个变量(如蘑菇的颜色、形状、光滑度等)。

 

# 抽样,并将总体分为训练集和测试集
set.seed(12)
index <- sample(1:nrow(mydata), size = 0.75*nrow(mydata))
train <- mydata[index,]
test <- mydata[-index,]
# 大致查看抽样与总体之间是否吻合
prop.table(table(mydata$type))
prop.table(table(train$type))
prop.table(table(test$type))

 

image.png

原始数据中毒蘑菇与非毒蘑菇之间的比较比较接近,通过抽选训练集和测试集,发现比重与总体比例大致一样,故可认为抽样的结果能够反映总体状况,可进一步进行建模和测试。

由于影响蘑菇是否有毒的变量有21个,可以先试着做一下特征选择,这里我们就采用随机森林方法(借助caret包实现特征选择的工作)进行重要变量的选择:

#构建rfe函数的控制参数(使用随机森林函数和10重交叉验证抽样方法,并抽取5组样本)
rfeControls_rf <- rfeControl(functions = rfFuncs,method = 'cv',repeats = 5)
#使用rfe函数进行特征选择				
fs_nb <- rfe(x = train[,-1],y = train[,1],sizes = seq(4,21,2),rfeControl = rfeControls_rf)
fs_nb
plot(fs_nb, type = c('g','o'))
fs_nb$optVariables

image.png

结果显示,21个变量中,只需要选择6个变量即可,下图也可以说明这一点:

image.png

所需要选择的变量是:

image.png

接下来,我们就针对这6个变量,使用朴素贝叶斯算法进行建模和预测:

# 使用klaR包中的NaiveBayes函数构建朴素贝叶斯算法
vars <- c('type',fs_nb$optVariables)
fit <- NaiveBayes(type ~ ., data = train[,vars])
# 预测
pred <- predict(fit, newdata = test[,vars][,-1])
# 构建混淆矩阵
freq <- table(pred$class, test[,1])
freq

image.png

# 模型的准确率
accuracy <- sum(diag(freq))/sum(freq)
accuracy

image.png

# 模型的AUC值
modelroc <- roc(as.integer(test[,1]), as.integer(factor(pred$class)))
# 绘制ROC曲线
plot(modelroc, print.auc = TRUE, auc.polygon = TRUE, grid = c(0.1,0.2), grid.col = c('green','red'),max.auc.polygon = TRUE, auc.polygon.col = 'steelblue')

image.png

通过朴素贝叶斯模型,在测试集中,模型的准确率约为97%,而且AUC的值也非常高,一般超过0.8就说明模型比较理想了。

 

参考来源于:https://ask.hellobi.com/blog/chuanshu108/6036

      https://ask.hellobi.com/blog/lsxxx2011/6381      

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157698.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业内部外网向内网传输文件如何实现高效安全?

随着信息技术的发展&#xff0c;企业内部外网隔离已成为一种常见的网络安全措施&#xff0c;旨在防止外部攻击者入侵内部网络&#xff0c;保护企业的核心数据和业务系统。然而&#xff0c;企业内外网隔离也带来了一些问题&#xff0c;其中之一就是如何实现内外网之间的文件传输…

Hadoop PseudoDistributed Mode 伪分布式

Hadoop PseudoDistributed Mode 伪分布式加粗样式 hadoop101hadoop102hadoop103192.168.171.101192.168.171.102192.168.171.103namenodesecondary namenoderecource managerdatanodedatanodedatanodenodemanagernodemanagernodemanagerjob historyjob logjob logjob log 1. …

【深度学习】pytorch——实现CIFAR-10数据集的分类

笔记为自我总结整理的学习笔记&#xff0c;若有错误欢迎指出哟~ 往期文章&#xff1a; 【深度学习】pytorch——快速入门 CIFAR-10分类 CIFAR-10简介CIFAR-10数据集分类实现步骤一、数据加载及预处理实现数据加载及预处理归一化的理解访问数据集Dataset对象Dataloader对象 二、…

UI设计一定不能错过的4款常用工具

虽然设计审美很重要&#xff0c;但软件只是一种工具&#xff0c;但就像走楼梯和坐电梯到达顶层一样&#xff0c;电梯的效率显然更高&#xff0c;易于使用的设计工具也是如此。让我们了解一下UI设计的主流软件&#xff0c;以及如何选择合适的设计软件。 即时设计 软件介绍 即…

【数据结构复习之路】数组和广义表(严蔚敏版)万字详解主打基础

专栏&#xff1a;数据结构复习之路 复习完上面三章【线性表】【栈和队列】【串】&#xff0c;我们接着复习数组和广义表&#xff0c;这篇文章我写的非常详细且通俗易懂&#xff0c;看完保证会带给你不一样的收获。如果对你有帮助&#xff0c;看在我这么辛苦整理的份上&#xf…

Go Metrics SDK Tag 校验性能优化实践

背景 Metrics SDK 是与字节内场时序数据库 ByteTSD 配套的用户指标打点 SDK&#xff0c;在字节内数十万服务中集成&#xff0c;应用广泛&#xff0c;因此 SDK 的性能优化是个重要和持续性的话题。本文主要以 Go Metrics SDK 为例&#xff0c;讲述对打点 API 的 hot-path 优化的…

《AI时代架构师修炼之道:ChatGPT让架构师插上翅膀》

本专注于帮助架构师在AI时代 实现晋级、提高效率的图书 书中介绍了如何使用 ChatGPT 来完成架构设计的各个环节 并通过实战案例展示了ChatGPT在实际架构设计中的应用方法 关键点 1.架构设计新模式&#xff1a;让架构设计更高效、更快捷、更完美。 2.全流程解析&#xff1a;涵盖…

物联网整体框架有哪些层面?

物联网是当前非常火热的话题&#xff0c;各个行业对物联网的关注和投入力度也很大&#xff0c;一些互联网巨头都在紧锣密鼓的布局物联网产业&#xff0c;抢占市场先机。 物联网的整体构架大致可以分为以下四个层面&#xff1a; 1.感知识别层 感知层是物联网整体架构的基础&…

项目级asp.net框架的LIMS实验室管理系统源码

LIMS可用于管理完整的实验程序&#xff0c;从样品登记到检验、校核、审核到最终批准报告&#xff0c;建立在过程质量控制的基础上&#xff0c;对检测流程进行有效全面的管理&#xff0c;对影响质量的人、机、料、法、环因素加以控制&#xff0c;同时为质量改进提供数据依据。进…

Azure - 机器学习:使用 Apache Spark 进行交互式数据整理

目录 本文内容先决条件使用 Apache Spark 进行交互式数据整理Azure 机器学习笔记本中的无服务器 Spark 计算从 Azure Data Lake Storage (ADLS) Gen 2 导入和整理数据从 Azure Blob 存储导入和处理数据从 Azure 机器学习数据存储导入和整理数据 关注TechLead&#xff0c;分享AI…

文件夹批量重命名:如何利用上级目录给多个文件夹进行高效重命名

在文件管理中&#xff0c;我们经常需要处理大量的文件和文件夹。其中&#xff0c;文件名过长或混乱的问题经常让我们感到困扰。这不仅影响了我们的工作效率&#xff0c;还可能导致一些错误。为了解决这个问题&#xff0c;我们可以用云炫文件管理器将“上级目录”批量重命名文件…

【STM32】基于HAL库建立自己的低功耗模式配置库(STM32L4系列低功耗所有配置汇总)

【STM32】基于HAL库建立自己的低功耗模式配置库&#xff08;STM32L4系列低功耗所有配置汇总&#xff09; 文章目录 低功耗模式&#xff08;此章节可直接跳过&#xff09;低功耗模式简介睡眠模式停止模式待机模式 建立自己的低功耗模式配置库通过结构体的方式来进行传参RTC配置…