大语言模型对齐技术 最新论文及源码合集(外部对齐、内部对齐、可解释性)

大语言模型对齐(Large Language Model Alignment)是利用大规模预训练语言模型来理解它们内部的语义表示和计算过程的研究领域。主要目的是避免大语言模型可见的或可预见的风险,比如固有存在的幻觉问题、生成不符合人类期望的文本、容易被用来执行恶意行为等。

从必要性上来看,大语言模型对齐可以避免黑盒效应,提高模型的可解释性和可控性,指导模型优化,确保AI 技术的发展不会对社会产生负面影响。因此,大语言模型对齐对AI系统的发展至关重要。

目前的大语言模型对齐研究主要分为三个领域:外部对齐、内部对齐、可解释性。我整理了这三个领域的最新论文分享给大家,帮助同学们掌握大语言模型对齐的最新技术与研究重点,快速找到新的idea。

全部论文及源代码看文末

外部对齐(23篇)

非递归监督

1.Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback

强化学习利用人类反馈的开放问题和根本限制

简述:RLHF已成为调优当前领先的大型语言模型(LLM)的核心方法。尽管很流行,但是系统地总结它的缺陷的公开工作相对较少。本文:(1)调研了RLHF及相关方法的开放问题和基本局限,(2)概述了在实践中理解、改进和补充RLHF的技术,(3)提出了审计和披露标准,以改进对RLHF系统的社会监督。

2.Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons

基于成对或K选项比较的人类反馈原则强化学习

简述:论文基于人类反馈强化学习(RLHF)提供了一个理论框架,证明了在基于学习的奖励模型训练策略时,MLE会失败,而悲观的MLE可以在某些覆盖假设下提供性能更好的策略。此外,在PL模型下,真实的MLE和将K选比较分解成成对比较的替代MLE都收敛。而且,真实的MLE在渐近意义上更有效率。

3.Secrets of RLHF in Large Language Models Part I: PPO

大语言模型中的RLHF奥秘 第1部分:PPO

简述:大语言模型通过人类反馈强化学习实现与人类的对齐,是实现人工通用智能的重要途径。但奖励设计、环境交互、智能体训练等方面的挑战使其稳定训练仍然困难。论文通过分析策略优化算法内部工作机制,提出了改进训练稳定性的方法,为大语言模型的对齐提供了新思路。

  • 4.Guiding Large Language Models via Directional Stimulus Prompting

  • 5.Aligning Large Language Models through Synthetic Feedback

  • 6.Aligning Language Models with Preferences through f-divergence Minimization

  • 7.Scaling Laws for Reward Model Overoptimization

  • 8.Improving Language Models with Advantage-based Offline Policy Gradients

  • 9.RL4F: Generating Natural Language Feedback with Reinforcement Learning for Repairing Model Outputs

  • 10.LIMA: Less Is More for Alignment

  • 11.SLiC-HF: Sequence Likelihood Calibration with Human Feedback

  • 12.RRHF: Rank Responses to Align Language Models with Human Feedback without tears

  • 13.Preference Ranking Optimization for Human Alignment

  • 14.Training Language Models with Language Feedback at Scale

  • 15.Direct Preference Optimization: Your Language Model is Secretly a Reward Model

  • 16.Training Socially Aligned Language Models on Simulated Social Interactions

  • 17.Chain of Hindsight Aligns Language Models with Feedback

  • 18.RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment

可扩展监督

1.Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision

从零开始用最小人工监督实现语言模型的原则驱动自对齐

简述:论文提出一种新的自监督对齐方法SELF-ALIGN,通过结合原则推理和大语言模型的生成能力,使AI助手实现自我对齐,仅需要极少的人类监督。该方法可以有效解决当前依赖监督训练和人类反馈的方法中的问题,如成本高、质量低等。在LLaMA语言模型上的应用证明该方法明显优于当前SOTA的AI助手。

2.Let's Verify Step by Step

一步步验证

简述:针对训练可靠的复杂多步推理的大语言模型,论文比较了结果监督和过程监督两种方法。研究发现,过程监督明显优于结果监督,可以获得更可靠的模型。作者采用过程监督和主动学习相结合的方法训练模型,在MATH数据集上取得了较好效果,测试集准确率达到78%。

3.Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate

通过多智能体辩论激发大语言模型的发散性思维

简述:近年大规模语言模型如ChatGPT在通用语言任务上表现强大,但在复杂推理上仍有困难。论文提出多智能体辩论框架来激发模型的发散思维,多个智能体以你来我往方式表达观点,评委管理过程获得最终解决方案。该框架可以激发语言模型的思考,有助于需要深度思考的任务。

4.Evaluating Superhuman Models with Consistency Checks

评估超人类模型的一致性检查

简述:近年来,机器学习模型在许多任务上达到或超过人类水平,如何评估这类“超人类”模型成为一个重要问题。论文提出通过一致性检查来评估它们,即使无法判断这类模型决策的正确性,如果决策间存在逻辑矛盾,我们仍可发现其缺陷。该工作强调继续改进评估方法的重要性,以推动可信赖的超人类AI系统发展。

5.Improving Factuality and Reasoning in Language Models through Multiagent Debate

通过多智能体辩论提高语言模型的事实性和推理能力

简述:论文提出了一种多语言模型互动的“思维社会”方法,多个模型提出并辩论各自的观点,经过多轮达成共识。实验表明,这种方法可以增强模型的逻辑推理能力,减少错误信息。而且这种方法可以直接应用于现有模型,并在各种任务上取得显著改进。

内部对齐(3篇)

1.Goal Misgeneralization: Why Correct Specifications Aren't Enough For Correct Goals

为什么正确的规范仍无法获得正确的目标?

简述:目标误推广是AI系统一个重要问题,它指学习算法把训练集表现良好的策略过度推广到新的环境,导致非预期的负面后果。论文通过深度学习等实际系统中的例子,展示了这一问题的存在。为避免更强AI系统产生这种问题,我们需要在算法设计上防范过度推广,也要增强系统对人类价值的内化理解。

2.Goal Misgeneralization in Deep Reinforcement Learning

深度强化学习中的目标误推广

简述:论文研究了强化学习中的一种分布外泛化失败类型——目标误推广。当强化学习代理在分布外保持其能力但追求错误目标时,就会发生目标误推广失败。作者形式化了能力泛化和目标泛化之间的区别,提供了目标误推广的首个实证演示,并部分描述了其原因。

3.Risks from Learned Optimization in Advanced Machine Learning Systems

高级机器学习系统中学习优化的风险

简述:论文认为MESA优化的可能性为高级机器学习系统的安全性和透明度提出了两个重要问题。第一,在什么情况下学习模型会成为优化器,包括在它本不应该成为优化器的情况下?第二,当学习模型成为优化器时,它的目标是什么——它将如何不同于其训练的损失函数——以及如何实现对齐?在本文中,作者对这两个主要问题进行了深入分析,并概述了未来研究的主题。

可解释性(9篇)

1.LEACE: Perfect linear concept erasure in closed form

LEACE:完美闭式线性概念擦除

简述:概念擦除是从机器学习模型中删除某个概念的影响,以提高模型的公平性和可解释性。论文提出了LEACE方法,可以高效并精确地实现线性模型的概念擦除。实验证明它可以减少语言模型对词性信息的依赖和模型中的性别偏见,增强机器学习模型的安全性、可解释性和公平性。

2.Inference-Time Intervention: Eliciting Truthful Answers from a Language Model

从语言模型中获得真实答案

简述:论文提出了“推理时干预”(ITI)技术,旨在增强大语言模型的“诚实度”。ITI 通过在推理时沿少数注意力头中的特定方向移动模型激活来实现,这种干预显著提高了LLaMA模型在TruthfulQA基准测试中的性能。另外,该技术的数据效率很高,虽然像RLHF这样的方法需要大量标注,但ITI 只需要几百个例子就可以找到真实的方向。

3.Locating and Editing Factual Associations in GPT

在GPT中定位和编辑事实关联

简述:论文现Transformer语言模型中存储和回忆事实性关联的机制对应于可定位和直接编辑的中间层计算。通过因果干预和模型编辑,作者确认了中间层前馈模块在记忆事实关联方面起关键作用。本文的模型编辑方法在零样本关系提取和反事实断言任务上都表现出强大的特异性和泛化能力,这说明直接操作中间层计算是模型编辑的一个有效途径。

  • 4.Mechanistic Interpretability, Variables, and the Importance of Interpretable Bases

  • 5.Toy Models of Superposition

  • 6.Softmax Linear Units

  • 7.Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space

  • 8.In-context Learning and Induction Heads

  • 9.A Comprehensive Mechanistic Interpretability Explainer & Glossary

关注下方《学姐带你玩AI》🚀🚀🚀

回复“对齐”获取全部论文+源代码合集

码字不易,欢迎大家点赞评论收藏!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161163.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LangChain+LLM实战---LlamaIndex、正确使用索引

LlamaIndex简介 LlamaIndex(也称为GPT Index)是一个用户友好的界面,它将您的外部数据连接到大型语言模型(Large Language Models, llm)。它提供了一系列工具来简化流程,包括可以与各种现有数据源和格式(如api、pdf、文档和SQL)集成的数据连接器。此外&a…

GNU ld 链接器lang_process() (一)

一、lang_process() 从现在开始介绍 lang_process()函数,是GNU ld(GNU链接器)的一个核心函数,负责执行链接过程中的各个关键操作。lang_process(void) 函数涵盖了整个链接过程中的各个关键步骤,包括符号解析、重定位、…

初识jQuery

文章目录 一、jQuery介绍二、Jquery优势三、jQuery版本四、jQuery对象jQuery的引用js代码与jQuery代码对比标签对象与jQuery对象 五、jQuery查找标签1.基本选择器2.组合选择器3.层次选择器4.属性选择器5.基本筛选器6.表单筛选器 六、筛选器方法七、操作标签1.class操作2.文本操…

Java-Hbase介绍

1.1. 概念 base 是分布式、面向列的开源数据库(其实准确的说是面向列族)。HDFS 为 Hbase 提供可靠的 底层数据存储服务,MapReduce 为 Hbase 提供高性能的计算能力,Zookeeper 为 Hbase 提供 稳定服务和 Failover 机制&#xff0c…

Flutter 07 框架和三棵树(Widgets、Elements和RenderObjects)

一、Flutter框架的整体结构: Flutter是Google推出并开源的跨平台开发框架,主打跨平台、高保真、高性能。开发者可以通过Dart语 言开发Flutter应用,一套代码同时运行在ios和Android平台。不仅如此,Flutter还支持Web、桌面、嵌 入应…

【RabbitMQ】RabbitMQ 消息的堆积问题 —— 使用惰性队列解决消息的堆积问题

文章目录 一、消息的堆积问题1.1 什么是消息的堆积问题1.2 消息堆积的解决思路 二、惰性队列解决消息堆积问题2.1 惰性队列和普通队列的区别2.2 惰性队列的声明方式2.3 演示惰性队列接收大量消息2.4 惰性队列的优缺点 一、消息的堆积问题 1.1 什么是消息的堆积问题 消息的堆积…

同城售后系统退款业务重构心得 | 京东云技术团队

一、重构背景 1.1、退款 到家、小时购、天选退款有2套结构,代码逻辑混乱; 其中小时购、天选部分售后单是和平生pop交互退款,部分是和售后中台交互退款;并且兼容3套逻辑; 痛点:代码繁重,缺乏…

CCLINK IEFB总线转ETHERNET/IP网络的协议网关使欧姆龙和三菱的数据互通的简单配置方法

想要实现CCLINK IEFB总线和ETHERNET/IP网络的数据互通。 捷米JM-EIP-CCLKIE是一款ETHERNET/IP从站功能的通讯网关,该产品主要功能是实现CCLINK IEFB总线和ETHERNET/IP网络的数据互通。本网关连接到ETHERNET/IP总线和CCLINK IEFB总线上都可以做为从站使用。网关分别…

创建基于多任务的并发服务器

有几个请求服务的客户端&#xff0c;我们就创建几个子进程。 这个过程有以下三个阶段&#xff1a; 这里父进程传递的套接字文件描述符&#xff0c;实际上不需要传递&#xff0c;因为子进程会复制父进程拥有的所有资源。 #include <stdio.h> #include <stdlib.h>…

Android---App 的安装过程

Android 系统中两个比较重要的服务 ActivityManagerService(AMS) 和 WindowManagerService(WMS)&#xff0c;这篇文章中通过分析 apk 的安装过程&#xff0c;来了解 Android 中另一个比较重要的系统服务 -- PackageManagerService(PMS)。 编译阶段 在分析安装过程之前&#x…

ElasticSearch集群架构实战及其原理剖析

ES集群架构 为什么要使用ES集群架构 分布式系统的可用性与扩展性&#xff1a; 高可用性 服务可用性&#xff1a;允许有节点停止服务&#xff1b;数据可用性&#xff1a;部分节点丢失&#xff0c;不会丢失数据&#xff1b; 可扩展性 请求量提升/数据的不断增长(将数据分布…

上线项目问题——无法加载响应数据

目录 无法加载响应数据解决 无法加载响应数据 上线项目时 改用服务器上的redis和MySQL 出现请求能请求到后端&#xff0c;后端也能正常返回数据&#xff0c;但是在前端页面会显示 以为是跨域问题&#xff0c;但是环境还在本地&#xff0c;排除跨域问题以为是服务器问题&#…