手把手教程 | YOLOv8-seg训练自己的分割数据集

🚀🚀🚀手把手教程:教会你如何使用自己的数据集开展分割任务

🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;
1)手把手教你如何训练YOLOv8-seg;
2)模型创新,提升分割性能;
3)独家自研模块助力分割;

1.数据集介绍

番薯破损分割任务,自己手动标注,数据集大小304张

1.数据集标注

使用labelme进行数据集标注,首先进行labelme安装

pip install labelme

2.数据集格式转换

json to txt以及 划分为train、val、test,适配yolov8-seg

2.1 json2txt.py

# -*- coding: utf-8 -*-
import json
import os
import argparse
from tqdm import tqdmdef convert_label_json(json_dir, save_dir, classes):json_paths = os.listdir(json_dir)classes = classes.split(',')for json_path in tqdm(json_paths):# for json_path in json_paths:path = os.path.join(json_dir, json_path)with open(path, 'r') as load_f:json_dict = json.load(load_f)h, w = json_dict['imageHeight'], json_dict['imageWidth']# save txt pathtxt_path = os.path.join(save_dir, json_path.replace('json', 'txt'))txt_file = open(txt_path, 'w')for shape_dict in json_dict['shapes']:label = shape_dict['label']label_index = classes.index(label)points = shape_dict['points']points_nor_list = []for point in points:points_nor_list.append(point[0] / w)points_nor_list.append(point[1] / h)points_nor_list = list(map(lambda x: str(x), points_nor_list))points_nor_str = ' '.join(points_nor_list)label_str = str(label_index) + ' ' + points_nor_str + '\n'txt_file.writelines(label_str)if __name__ == "__main__":"""python json2txt_nomalize.py --json-dir my_datasets/color_rings/jsons --save-dir my_datasets/color_rings/txts --classes "cat,dogs""""parser = argparse.ArgumentParser(description='json convert to txt params')parser.add_argument('--json-dir', type=str,default='F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/json', help='json path dir')parser.add_argument('--save-dir', type=str,default='F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/txt' ,help='txt save dir')parser.add_argument('--classes', type=str, default='skinning',help='classes')args = parser.parse_args()json_dir = args.json_dirsave_dir = args.save_dirclasses = args.classesconvert_label_json(json_dir, save_dir, classes)

2.2 划分为train、val、test

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
import argparse# 检查文件夹是否存在
def mkdir(path):if not os.path.exists(path):os.makedirs(path)def main(image_dir, txt_dir, save_dir):# 创建文件夹mkdir(save_dir)images_dir = os.path.join(save_dir, 'images')labels_dir = os.path.join(save_dir, 'labels')img_train_path = os.path.join(images_dir, 'train')img_test_path = os.path.join(images_dir, 'test')img_val_path = os.path.join(images_dir, 'val')label_train_path = os.path.join(labels_dir, 'train')label_test_path = os.path.join(labels_dir, 'test')label_val_path = os.path.join(labels_dir, 'val')mkdir(images_dir);mkdir(labels_dir);mkdir(img_train_path);mkdir(img_test_path);mkdir(img_val_path);mkdir(label_train_path);mkdir(label_test_path);mkdir(label_val_path);# 数据集划分比例,训练集75%,验证集15%,测试集15%,按需修改train_percent = 0.85val_percent = 0.15test_percent = 0total_txt = os.listdir(txt_dir)num_txt = len(total_txt)list_all_txt = range(num_txt)  # 范围 range(0, num)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# 在全部数据集中取出trainval_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = os.path.join(image_dir, name + '.jpg')srcLabel = os.path.join(txt_dir, name + '.txt')if i in train:dst_train_Image = os.path.join(img_train_path, name + '.jpg')dst_train_Label = os.path.join(label_train_path, name + '.txt')shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)elif i in val:dst_val_Image = os.path.join(img_val_path, name + '.jpg')dst_val_Label = os.path.join(label_val_path, name + '.txt')shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)else:dst_test_Image = os.path.join(img_test_path, name + '.jpg')dst_test_Label = os.path.join(label_test_path, name + '.txt')shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)if __name__ == '__main__':"""python split_datasets.py --image-dir my_datasets/color_rings/imgs --txt-dir my_datasets/color_rings/txts --save-dir my_datasets/color_rings/train_data"""parser = argparse.ArgumentParser(description='split datasets to train,val,test params')parser.add_argument('--image-dir', type=str,default='F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/images', help='image path dir')parser.add_argument('--txt-dir', type=str,default='F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/txt' , help='txt path dir')parser.add_argument('--save-dir', default='F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/split', type=str, help='save dir')args = parser.parse_args()image_dir = args.image_dirtxt_dir = args.txt_dirsave_dir = args.save_dirmain(image_dir, txt_dir, save_dir)

3.如何训练yolov8-seg

3.1 skinning.yaml配置

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/split  # dataset root dir
train: F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/split/images/train  # train images (relative to 'path') 4 images
val: F:/DL/Pytorch/yolov8/ultralytics-seg/data/skinning/split/images/val  # val images (relative to 'path') 4 images
test:  # test images (optional)nc: 1# Classes
names:0: skinning

3.2 如何训练

from ultralytics.cfg import entrypoint
arg="yolo segment train model=yolov8-seg0.yaml data=ultralytics/cfg/datasets/skinning.yaml"entrypoint(arg)

3.3 yolov8-seg.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Segment, [nc, 32, 256]]  # Segment(P3, P4, P5)

4.训练结果可视化

Mask map0.5 原始为0.625

MaskF1_curve

 MaskP_curve

MaskPR_curve

MaskR_curve

 预测结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161166.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Bytedance揭秘OpenAI大模型: GPT-3到GPT-4进化路径

文章目录 探秘GPT-3到GPT-4进化之路1、SFT:早期GPT进化的推动者2、RLHF和SFT:编码能力提升的功臣3、代码加入预训练,对推理帮助最大4、“跷跷板”现象 论文地址项目链接Reference GPT-Fathom: Benchmarking Large Language Models to Deciphe…

Angular异步数据流编程

1 目前常见的异步编程的几种方法 首先给出一个异步请求的实例: import {Injectable} from angular/core;Injectable({providedIn: root }) export class RequestServiceService {constructor() {}getData() {setTimeout(() > {let res zhaoshuai-lcreturn res…

大语言模型对齐技术 最新论文及源码合集(外部对齐、内部对齐、可解释性)

大语言模型对齐(Large Language Model Alignment)是利用大规模预训练语言模型来理解它们内部的语义表示和计算过程的研究领域。主要目的是避免大语言模型可见的或可预见的风险,比如固有存在的幻觉问题、生成不符合人类期望的文本、容易被用来执行恶意行为等。 从必…

LangChain+LLM实战---LlamaIndex、正确使用索引

LlamaIndex简介 LlamaIndex(也称为GPT Index)是一个用户友好的界面,它将您的外部数据连接到大型语言模型(Large Language Models, llm)。它提供了一系列工具来简化流程,包括可以与各种现有数据源和格式(如api、pdf、文档和SQL)集成的数据连接器。此外&a…

GNU ld 链接器lang_process() (一)

一、lang_process() 从现在开始介绍 lang_process()函数,是GNU ld(GNU链接器)的一个核心函数,负责执行链接过程中的各个关键操作。lang_process(void) 函数涵盖了整个链接过程中的各个关键步骤,包括符号解析、重定位、…

初识jQuery

文章目录 一、jQuery介绍二、Jquery优势三、jQuery版本四、jQuery对象jQuery的引用js代码与jQuery代码对比标签对象与jQuery对象 五、jQuery查找标签1.基本选择器2.组合选择器3.层次选择器4.属性选择器5.基本筛选器6.表单筛选器 六、筛选器方法七、操作标签1.class操作2.文本操…

Java-Hbase介绍

1.1. 概念 base 是分布式、面向列的开源数据库(其实准确的说是面向列族)。HDFS 为 Hbase 提供可靠的 底层数据存储服务,MapReduce 为 Hbase 提供高性能的计算能力,Zookeeper 为 Hbase 提供 稳定服务和 Failover 机制&#xff0c…

Flutter 07 框架和三棵树(Widgets、Elements和RenderObjects)

一、Flutter框架的整体结构: Flutter是Google推出并开源的跨平台开发框架,主打跨平台、高保真、高性能。开发者可以通过Dart语 言开发Flutter应用,一套代码同时运行在ios和Android平台。不仅如此,Flutter还支持Web、桌面、嵌 入应…

【RabbitMQ】RabbitMQ 消息的堆积问题 —— 使用惰性队列解决消息的堆积问题

文章目录 一、消息的堆积问题1.1 什么是消息的堆积问题1.2 消息堆积的解决思路 二、惰性队列解决消息堆积问题2.1 惰性队列和普通队列的区别2.2 惰性队列的声明方式2.3 演示惰性队列接收大量消息2.4 惰性队列的优缺点 一、消息的堆积问题 1.1 什么是消息的堆积问题 消息的堆积…

同城售后系统退款业务重构心得 | 京东云技术团队

一、重构背景 1.1、退款 到家、小时购、天选退款有2套结构,代码逻辑混乱; 其中小时购、天选部分售后单是和平生pop交互退款,部分是和售后中台交互退款;并且兼容3套逻辑; 痛点:代码繁重,缺乏…

CCLINK IEFB总线转ETHERNET/IP网络的协议网关使欧姆龙和三菱的数据互通的简单配置方法

想要实现CCLINK IEFB总线和ETHERNET/IP网络的数据互通。 捷米JM-EIP-CCLKIE是一款ETHERNET/IP从站功能的通讯网关,该产品主要功能是实现CCLINK IEFB总线和ETHERNET/IP网络的数据互通。本网关连接到ETHERNET/IP总线和CCLINK IEFB总线上都可以做为从站使用。网关分别…

创建基于多任务的并发服务器

有几个请求服务的客户端&#xff0c;我们就创建几个子进程。 这个过程有以下三个阶段&#xff1a; 这里父进程传递的套接字文件描述符&#xff0c;实际上不需要传递&#xff0c;因为子进程会复制父进程拥有的所有资源。 #include <stdio.h> #include <stdlib.h>…