Flink -- 状态与容错

1、Stateful Operations 有状态算子:

有状态计算,使用到前面的数据,常见的有状态的算子:例如sum、reduce,因为它们在计算的时候都是用到了前面的计算的结果

总结来说,有状态计算并不是独立存在的,每一次的计算都与前面的数据是有关系的。所有的聚合算子都是有状态算子。

2、CheckPoint:

        1、CheckPoint:定时将Flink的计算的状态持久化到Hdfs上,如果Flink的任务失败可以基于Hdfs中保存的状态恢复任务,能够保证任务的计算状态不丢失。checkpoint可以维护TB级别的计算状态。

        2、Fllink会将计算状体存储两份,一份是存储在Flink内存中,放在内存中是为了获取查询更新,因为Flink在处理数据的是过程中,计算状态会改变,第二份是通过CheckPoint将计算状态持久化的存储到Hdfs中,这样可以保证Flink任务失败的时候可以基于Hdfs中存储的计算状态恢复任务。

总结:就是原先Flink的计算的状态是存储在内存中,但是为了防止计算状态丢失,就将Flink的计算状态持久化到Hdfs中。当任务中途失败后,找到最新的一个checkpoint,基于这个checkpoint中存储的数据作为计算状态恢复任务。

        3、CheckPoint的开启方式:

                1、在代码中单独开启checkpoint:
// 每 10000ms 开始一次 checkpoint
env.enableCheckpointing(10000)// 高级选项:
// 设置模式为精确一次 (这是默认值)
env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)// 确认 checkpoints 之间的时间会进行 500 ms
env.getCheckpointConfig.setMinPauseBetweenCheckpoints(500)// Checkpoint 必须在一分钟内完成,否则就会被抛弃
env.getCheckpointConfig.setCheckpointTimeout(60000)// 允许两个连续的 checkpoint 错误
env.getCheckpointConfig.setTolerableCheckpointFailureNumber(2)// 同一时间只允许一个 checkpoint 进行
env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)// 使用 externalized checkpoints,这样 checkpoint 在作业取消后仍就会被保留
env.getCheckpointConfig.setExternalizedCheckpointCleanup(
ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)//增量快照
env.setStateBackend(new EmbeddedRocksDBStateBackend(true))//将状态保存到hdfs中env.getCheckpointConfig.setCheckpointStorage("hdfs://master:9000/file/checkpoint")

public class Demo01CheckPoint {public static void main(String[] args) throws Exception{/*** 使用checkpoint来保存计算状态*///构建Flink环境:StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//开socketDataStreamSource<String> lineDS = env.socketTextStream("master", 8888);//开启checkpoint//指定10秒拍一次checkpointenv.enableCheckpointing(10000);//使用 externalized checkpoints,这样 checkpoint 在作业取消后仍就会被保留env.getCheckpointConfig().setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);//将计算状态保存到hdfs中env.getCheckpointConfig().setCheckpointStorage("hdfs://master:9000/file/checkpoint");//指定计算状态在Flink中的存储的位置:是基于磁盘还是存储在内存中//HashMapStateBackend(),表示的是数据存储在Flink的内存中env.setStateBackend(new HashMapStateBackend());//做wordCountSingleOutputStreamOperator<String> wordDS = lineDS.flatMap((line, out) -> {String[] split = line.split(",");for (String word : split) {//将数据循环发送到下游:out.collect(word);}},Types.STRING);//将上游传输过来的数据构建成kv形式的数据:SingleOutputStreamOperator<Tuple2<Object, Integer>> mapDS = wordDS.map(word -> Tuple2.of(word, 1), Types.TUPLE(Types.STRING, Types.INT));//将构建好的数据进行分组KeyedStream<Tuple2<Object, Integer>, Object> keyByDS = mapDS.keyBy(kv -> kv.f0);//统计数量SingleOutputStreamOperator<Tuple2<Object, Integer>> countDS = keyByDS.sum(1);//打印数据countDS.print();//执行Flink:env.execute();}
}
        2、在集群中统一开启checkpoint:
修改flink-conf.yaml配置文件
# 修改以下配置
execution.checkpointing.interval: 5000
execution.checkpointing.externalized-checkpoint-retention: RETAIN_ON_CANCELLATION
execution.checkpointing.max-concurrent-checkpoints: 1
execution.checkpointing.min-pause: 0
execution.checkpointing.mode: EXACTLY_ONCE
execution.checkpointing.timeout: 10min
execution.checkpointing.tolerable-failed-checkpoints: 0
execution.checkpointing.unaligned: false
state.backend: hashmap
state.checkpoints.dir: hdfs://master:9000/file/checkpoint

        在hdfs中查看checkpoint文件:

hdfs dfs -ls /file/checkpoint/

        用可视化界面查看checkpoint的信息:

         3、提交任务

         例如: 使用yarn-session.sh  -d 启动Flink集群:提交jar包,两种方式,第一种是通过网页的自动提交,第二种是通过session命令提交。

        第一次提交任务:在使用命令行的模式提交jar包的时候需要注意的是:第一次提交任务的时候可以直接提交:例如:

使用session提交任务:flink run -t yarn-session  -Dyarn.application.id=application_1698996244566_0009  -c flink.core.Demo1WordCount flink-1.0.jar

         当第一次提交后并失败,重启任务:当任务失败过后,并且开启了checkpoint,重启任务:

flink run -t yarn-session  -Dyarn.application.id=application_1698996244566_0009 -s hdfs://master:9000/file/checkpoint/deed690403e740b734ea62fcd1963daf/chk-33 -c flink.core.Demo1WordCount flink-1.0.jar

 当选择在页面再次提交任务,需要指定最新的checkpoint的文件的位置:

        需要注意的是当使用checkpoint做快照的时候,会在指定的时间拍一次快照,并生成一个新文件来覆盖前面旧的文件存储在hdfs上面。

3、checkpoint的原理:

        1、首先JobManager中的checkpoint Coonaotr checkpoint控制器会定期的向source task 发送checkpoint trigger

        2、source task 就会在数据流中安插checkpoint barrier,就像一个挡板一样的

        3、source task 向下游传递barrier,自生也会同步快照,并将状态持久化写入到hdfs中。

        4、Task B接收到上游Task A所有实例发送的barrier 时,会继续向下游传递barrier,自身同步进行快照,并将状态持久化写入到hdfs中

        5、Task C接收到上游Task B发送的 barrier时,自身同步进行快照,并将状态异步写持久化写入到hdfs中

        6、状态信息备份完成以后上报state handle

4、Keyed State
        1、ValueState(单值状态):

保存一个可以更新和检索的值(例如每一个值都对应到当前的输入数据key,因此算子接收到的每一个key都有可能对应一个值),这个值可以通过updata进行更新,可以通过value进行检索。flink的ValueState状态,会对每一个key都保存一个值,并且可以更新,数据会被checkpoint定期的存储到hdfs中做持久化。

public class Demo02ValueState {public static void main(String[] args)  throws Exception{StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStream<String> wordsDS = env.socketTextStream("master", 8888);//安装单词分组KeyedStream<String, String> keyByDS = wordsDS.keyBy(word -> word);DataStream<Tuple2<String, Integer>> countDS = keyByDS.process(new KeyedProcessFunction<String, String, Tuple2<String, Integer>>() {//Flink中的单值状态valueState,对于Flink来说,如果使用的是HashMap来说,虽然对于不同的key是可以用来存储// 但是数据是存储在内存中,如果中途任务失败,那么任务重新启动的难度会比较大//flink的ValueState状态,会对每一个key都保存一个值,并且可以更新,数据会被checkpoint定期的存储到hdfs中做持久化。//需要重写open方法:是每一个task启动的时候会执行一次,用于对任务的初始化ValueState<Integer> state;@Overridepublic void open(Configuration parameters) throws Exception {//获取flink的执行上下文对象,使用上下文对象进行初始化RuntimeContext context = getRuntimeContext();//创建描述对象,描述状态的类型和名称:ValueStateDescriptor<Integer> count = new ValueStateDescriptor<>("count", Types.INT);//获取状态state = context.getState(count);}@Overridepublic void processElement(String word,KeyedProcessFunction<String, String, Tuple2<String, Integer>>.Context ctx,Collector<Tuple2<String, Integer>> out) throws Exception {//从中间获取单词的数量,返回值的类型是一个包装类,所以返回的值如果是空就会使用null表示Integer count = state.value();if(count==null){count=0;}count++;//将单词的数量返回出去state.update(count);//将结果返回到下游:out.collect(Tuple2.of(word,count));}});countDS.print();env.execute();}
}
        2、ListState<T>:

保存一个元素的列表。可以往这个列表中追加数据,并在当前的列表上进行检索,可以通过add或者是addall进行添加元素,通过Iterable  get ()获取整个列表,还可以通过update(list<T>)来覆盖当前的列表。

        3、ReducingState<T>:

保存一个值,表示添加到状态的所有值的聚合。接口与ListState类似,但是使用add添加元素,时使用提供的ReduceFuncation进行聚合。

        4、AggregatingState<IN,OUT>:

保留一个单值,表示添加到状态的所有值的集合。与ReducingState相反,聚合类可能与添加到状态的元素的类型不同,接口与ListState类似,但是使用add(IN)天机的元素会使用指定的AggregateFunction进行聚合

        5、MapState<UK,UV>:

维护了一个映射列表,可以添加键值对到状态中,也可以获得反映当前所有映射的迭代器。使用put(UK,UV)或者是ptuALL(Map<UK,UV>)添加映射。 使用get(UK)检索特定的key。 使用 entries()keys() 和 values() 分别检索映射、键和值的可迭代视图。你还可以通过 isEmpty() 来判断是否包含任何键值对。

5、数据处理的语义:
        1、主要分成三种:Exactly Once(唯一一次)、至少一次、最多一次
        2、Exactly Once:指的是数据不多不少只会被处理一次
        3、kafka唯一一次:

                1、数据生产端唯一一次:

                        a、kafka 0.11之后,Producer的send操作现在是幂等的,保证了数据的不重复,在任何导致producer重试的情况下,相同的消息,如果被producer发送多次,也只会被写入Kafka一次。

                        b、ACKS机制+副本,保证数据不丢失

                                副本:保证存储到kafka副本中的数据不会丢失

                                ACKS机制:

acks机制:acks=1 (一般默认)第一个副本写入成功后就会返回成功,可能会丢失会丢失数据acks=0  生产者只负责写入数据,不负责验证数据是否成功,可能会丢失数据acks=-1/all 当所有的副本都同步成功之后才会返回成功
kafka端保证数据的唯一一次:1、幂等性:保证数据不重复2、副本:保证成功存入的数据不丢失3、acks机制:当acks的结果是all的时候数据不丢失4、事务:保证数据不重复

               

                2、数据消费端:

                        a、Flink 分布式快照保存数据计算的状态和消费的偏移量,保证程序重启之后不丢失状态和消费偏移量

                        

                3、Sink端:

                        a、将Flink的结果数据再写入到kafka中

 如果任务在执行过程中失败,恢复到原先的状态,此时在将结果写入到Kafka中,就有可能会有重复的数据,想要保证数据的不重复,就在两个checkpoint中间的数据存放一个事务中。当前一个事务开始,到后面的一个事务提交,一个事务才算提交完成,如果中间出现错误,此时任务就会失败,就不会导致数据重复,但是会产生延迟。

                b、将数据写入kafka的唯一一次

public class Demo5KafkaExactlyOnce {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//构建kafka sourceKafkaSource<String> source = KafkaSource.<String>builder()//指定broker列表.setBootstrapServers("master:9092,node1:9092,node2:9092")//指定topic.setTopics("in")//消费者组.setGroupId("my-group")//指定读取数据的位置:earliest:读取最早的数据, latest: 读取最新的数据.setStartingOffsets(OffsetsInitializer.earliest())//读取数据的格式.setValueOnlyDeserializer(new SimpleStringSchema()).build();//使用 kafka sourceDataStreamSource<String> kafkaDS = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");//堆数据进行清洗过滤SingleOutputStreamOperator<String> filterDS = kafkaDS.filter(word -> !"java".equals(word));Properties properties = new Properties();//设置事务超时时间properties.setProperty("transaction.timeout.ms", String.valueOf(10 * 60 * 1000));//创建kafka sinkKafkaSink<String> sink = KafkaSink.<String>builder()//kafka broker列表.setBootstrapServers("master:9092,node1:9092,node2:9092")//指定而外的配置.setKafkaProducerConfig(properties)//指定数据的格式.setRecordSerializer(KafkaRecordSerializationSchema.builder()//指定topic,如果topic不存在会自动创建一个分区为1副本为1的topic.setTopic("out1")//指定数据格式.setValueSerializationSchema(new SimpleStringSchema()).build())//指定数据处理的语义//EXACTLY_ONCE:唯一一次,flink会将两次checkpoint中间的结果放到一个事务中,要么都成功要么都失败.setDeliverGuarantee(DeliveryGuarantee.EXACTLY_ONCE).build();filterDS.sinkTo(sink);env.execute();}
}
 #向kafka中生产新的数据
kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic in#1、第一次直接提交
flink run -t yarn-per-job -c flink.state.Demo5KafkaExactlyOnce flink-1.0.jar#2、任务执行失败重启
flink run -t yarn-per-job -c flink.state.Demo2ExactlyOnce -s hdfs://master:9000/flink/checkpoint/3c1e5dcabcd934a6d93ab6af04f10ca9/chk-5 flink-1.0.jar#消费数据时需要设置只读已提交
# read_committed: 读已提交数据,
kafka-console-consumer.sh --bootstrap-server  master:9092,node1:9092,node2:9092 --isolation-level read_committed --from-beginning --topic out
6、checkpoint的主要流程:

        1、首先Flink在计算的过程中会产生有状态算子,首先会默认将状态算子存储到TaskManager内存中,如果数据源是来时Kafka,此时Kafksa中的source task会将偏移量也保存到状态中,一同存储到TaskManager内存中。

                为什么会存储偏移量:任务失败重启过后,可以通过偏移量获取失败前任务读取数据的位置,再从这个位置开始读取数据。

        2、然后在被checkpoint定时持久化到Hdfs中

        3、当任务失败重启后,基于HDFS中的存储的数据,重启启动任务,会将HDFS中存储的状态读取到TaskManager内存中。

7、数据容错的过程,保证数据不丢失的:

               对于上游的Task和下游的Task是同时做checkpoint还是在同一条数据做checkpoint?

                Flink的流处理的过程中时Task是在同一条数据做checkpoint,例如图所示,

                1、在使用kafka当作数据源的时候,source task 会在数据里中安插一个挡板

                2、当上游的Task任务和下游的Task都到达第一个挡板的位置时都会做checkpoint,此时在内存中状态入图所示就是[偏移量:4 ,计算的结果是:a:2,b:1,c:1,d:1]

                3、当任务在执行的过程中,任务失败,此时就会将状态恢复到第一次checkpoint的位置,再重新启动任务读取数据。

                4、需要注意的是对于数据源,必须是可重复读取的数据源,假设任务指定到图中箭头位置失败,此时在会恢复到快照的位置,如果数据不能重复读,那么中间的数据就会丢失。

   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164972.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

界面控件DevExpress WPF PDF Viewer,更快实现应用的PDF文档浏览

DevExpress WPF PDF Viewer控件可以轻松地直接在Windows应用程序中显示PDF文档&#xff0c;而无需在最终用户的机器上安装外部PDF查看器。 P.S&#xff1a;DevExpress WPF拥有120个控件和库&#xff0c;将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpress…

一天吃透MySQL面试八股文

目录 事务的四大特性&#xff1f;数据库的三大范式事务隔离级别有哪些&#xff1f;生产环境数据库一般用的什么隔离级别呢&#xff1f;编码和字符集的关系utf8和utf8mb4的区别什么是索引&#xff1f;索引的优缺点&#xff1f;索引的作用&#xff1f;什么情况下需要建索引&…

webpack的简单使用

什么是webpack&#xff08;去官网看详细的API&#xff09; 本质上&#xff0c;webpack 是一个用于现代 JavaScript 应用程序的 静态模块打包工具。当 webpack 处理应用程序时&#xff0c;它会在内部从一个或多个入口点构建一个 依赖图(dependency graph)&#xff0c;然后将你项…

最大连续子数组

最大连续子数组&#xff08;Maximum Subarray&#xff09;问题是一个经典的算法问题&#xff0c;其目标是在给定的整数数组中找到一个连续的子数组&#xff0c;使得该子数组的元素之和最大。这个问题有多种解决方法&#xff0c;其中包括暴力解法、分治法和动态规划等。 下面是…

数字化转型:云表低代码开发助力制造业腾飞

数字化转型已成为制造业不可避免的趋势。为了应对市场快速变化、提高运营效率以及降低成本&#xff0c;制造业企业积极追求更加智能化、敏捷的生产方式。在这个转型过程中&#xff0c;低代码技术作为一种强大的工具&#xff0c;正逐渐崭露头角&#xff0c;有望加速制造业的数字…

6个机器学习可解释性框架

1、SHAP SHapley Additive explanation (SHAP)是一种解释任何机器学习模型输出的博弈论方法。它利用博弈论中的经典Shapley值及其相关扩展将最优信贷分配与局部解释联系起来. 举例&#xff1a;基于随机森林模型的心脏病患者预测分类 数据集中每个特征对模型预测的贡献由Shap…

Mac下flutter工程配置Gitlab cicd打包(暂时仅限android侧)

写的太粗糙&#xff0c;可能不太适合完全不懂的同学&#xff0c;但是实在没时间&#xff0c;而且也不太会写&#xff0c;权当做一个记录吧&#xff0c;对了还没有搞docker这些&#xff0c;还在持续学习中 1.GitLab Runner&#xff08;打包机&#xff09; 注意:需要有对应的权…

跟着森老师学React Hooks(1)——使用Vite构建React项目

Vite是一款构建工具&#xff0c;对ts有很好的支持&#xff0c;最近也是在前端越来越流行。 以往的React项目的初始化方式大多是通过脚手架create-react-app(本质是webpack)&#xff0c;其实比起Vite来构建&#xff0c;启动会慢一些。 所以这次跟着B站的一个教程&#xff0c;使用…

关于卷积神经网络的步幅(stride)

认识步幅&#xff08;stride&#xff09; 卷积核从输入数组的最左上方开始&#xff0c;按从左往右、从上往下的顺序&#xff0c;依次在输入数组上滑动&#xff0c;我们将每次滑动的行数和列数称为步幅。 计算步幅 假设输入的形状n∗n&#xff0c;卷积核的形状为f∗f&#xff0…

手动关闭PS中的TopazStudio2的登录窗口

2021 adobe photoshop Topaz Studio 2 不是使用防火墙出站规则&#xff0c;是手动关闭的解决方案 点击社区-切换用户&#xff0c;登录窗口会出现X&#xff0c;可以手动关闭

[论文阅读]PV-RCNN++

PV-RCNN PV-RCNN: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection 论文网址&#xff1a;PV-RCNN 论文代码&#xff1a;PV-RCNN 简读论文 这篇论文提出了两个用于3D物体检测的新框架PV-RCNN和PV-RCNN,主要的贡献如下: 提出P…

Gorm 中的钩子和回调

一个全面的指南&#xff0c;利用 GORM 中的钩子和回调的力量&#xff0c;为定制的数据库工作流程 在数据库管理领域&#xff0c;定制化是打造高效和定制化工作流程的关键。GORM&#xff0c;这个充满活力的 Go 对象关系映射库&#xff0c;为开发人员提供了钩子和回调的功能&…