PanNet: A deep network architecture for pan-sharpening(ICCV 2017)


文章目录

  • Abstract
  • Introduction
    • 过去方法存在的问题
    • 我们提出新的解决方法
    • Related work
  • PanNet: A deep network for pan-sharpening(PanNet:用于泛锐化的深度网络)
    • Background and motivation
    • PanNet architecture
      • Spectral preservation
      • Structural preservation
      • Network architecture
  • Experiments
  • Conclusion

論文鏈接
源代码

Abstract

我们针对泛锐化问题提出了一种深度网络架构,称为PanNet。我们结合特定领域的知识来设计我们的PanNet架构,重点关注泛锐化问题的两个目标:光谱和空间保存
为了保持光谱,我们将上采样的多光谱图像加入到网络输出中,直接将光谱信息传播到重建图像中
为了保持空间结构,我们在高通滤波域而不是图像域训练网络参数
我们表明,训练后的网络可以很好地泛化来自不同卫星的图像,而无需再训练。实验表明,在视觉上和标准质量度量方面,比最先进的方法有了显著的改进

Introduction

多光谱图像在农业、矿业和环境监测等领域有着广泛的应用。由于物理限制,卫星通常只能测量一张高分辨率全色(PAN)图像(即灰度)和几张低分辨率多光谱(LRMS)图像.泛锐化的目标是将这些光谱信息和空间信息融合在一起,得到与PAN相同尺寸的高分辨率多光谱(HRMS)图像

过去方法存在的问题

随着近年来深度神经网络在图像处理应用中的进展,研究人员已经开始探索这种泛锐化的途径,例如,一个深度泛锐化模型假设关系HR/LR多光谱图像斑块之间的差值与对应的HR/LR全色图像斑块之间的差值相同,并利用这一假设通过神经网络学习映射,最先进的泛锐化模型,基于卷积神经网络,称为PNN[21],采用了先前提出的图像超分辨率架构
这两种方法都把泛锐化问题看作一个简单的图像回归问题。也就是说,尽管他们能够获得良好的结果,但他们没有利用泛锐化的特定目标——光谱和空间保存——而是将泛锐化视为一个黑盒深度学习问题。然而,对于泛锐化,很明显,保留空间和光谱信息是融合的主要目标,因此深度学习方法应该明确地关注这些方面

我们提出新的解决方法

这激发了我们提出的称为“PanNet”的深度网络,它具有以下特征:

  1. 我们将泛锐化的问题特定知识纳入深度学习框架。具体来说,我们使用上采样的多光谱图像在网络中传播光谱信息,我们将此过程称为“光谱映射”。为了重点研究PAN图像中的主体结构,我们在高通域而不是图像域训练网络
  2. 我们的方法是一个端到端系统,它完全从数据中自动学习映射。与之前的(非深度)方法不同,卷积允许我们捕获MS图像和PAN图像不同波段的内部相关性
    实验表明,PanNet与几种标准方法以及其他深度模型相比,实现了最先进的性能
  3. 由于成像值的范围不一致,大多数传统方法需要针对不同的卫星进行参数调整。然而,在高通域的训练消除了这个因素,允许在一个卫星上的训练很好地推广到新的卫星,这不是在图像域上训练的其他深度方法的特征

Related work

简要介绍下过去的work
近几十年来出现了各种各样的pan锐化方法。其中,最流行的是基于分量替换,包括强度色调饱和度技术(IHS)[5],主成分分析(PCA)[20]和Brovey变换[14]。这些方法简单而快速,但它们往往以引入光谱失真为代价,成功地接近了PAN中包含的HRMS图像的空间分辨率
为了解决这个问题,已经提出了更复杂的技术,例如自适应方法(例如,PRACS[8])和频段相关方法(例如,BDSD[13])。在多分辨率方法[19,22]中,PAN图像和LRMS图像被分解,例如使用小波或拉普拉斯金字塔,然后融合
其他基于模型的方法将PAN、HRMS和LRMS图像之间关系的信念编码为正则化目标函数,然后将融合问题视为图像恢复优化问题[3,4,7,9,12,18]。其中许多算法都取得了很好的效果。我们在这些方法中选择最好的方法进行实验比较

PanNet: A deep network for pan-sharpening(PanNet:用于泛锐化的深度网络)


图2显示了我们提出的泛锐化深度学习方法(称为PanNet)的高级概要。我们首先回顾了泛锐化问题的常见方法,然后在泛锐化的两个目标背景下讨论了我们的方法,即重建包含pan空间内容的高分辨率多光谱图像和低分辨率图像的光谱内容

Background and motivation

我们将期望的HRMS图像集表示为X,并设Xb为第b个波段的图像。对于观测数据,P为PAN图像,M为LRMS图像,Mb为第b波段。大多数最先进的方法将融合视为最小化形式的目标

其中f1 (X,P)项强制结构一致性,f2 (X,M)强制光谱一致性,f3 (X)对X施加期望的图像约束。例如,第一个变分方法P+XS让

ω是一个b维概率权向量

其他方法使用空间差分算子G来关注高频内容
为了光谱的一致性,许多方法定义

↑M b表示上采样M b与X b大小相同,通过与平滑核k卷积进行平滑。f3 (X)通常是总变异惩罚

对于泛锐化问题,一个直接的深度学习方法可以利用一个简单的网络架构来学习输入(P,M)和输出X之间的非线性映射关系

其中,fw代表一个神经网络,W代表其参数

PNN[21]使用了这一思想,它直接将(P,M)输入到一个深度卷积神经网络中来近似x。尽管这种直接的架构给出了很好的结果,但它没有利用已知的图像特征来定义输入或网络结构

PanNet architecture

与PNN一样,我们也使用卷积神经网络(CNN),但我们的具体结构与PNN不同,使用最近提出的ResNet结构作为我们的神经网络
卷积滤波器对于这个问题特别有用,因为它们可以利用多光谱图像不同波段之间的高相关性,这在SIRF算法[7]中被证明是有用的。与其他泛锐化方法一样,我们的深度网络旨在同时保留光谱和空间信息
High-level idea用图3所示的潜在网络结构序列表示

我们考虑的三种泛锐化模型结构的例子:(从左到右)ResNet [15],ResNet+光谱映射,以及最终提出的网络,称为PanNet。ResNet已被证明可以提高CNN在图像处理任务上的性能,但在泛锐化框架中存在缺点。第二种网络实现了光谱保存的目标,而最后一种网络同时捕获了空间和光谱信息。我们对这三种方法都进行了试验,但没有一种应用于泛锐化

Spectral preservation

为了融合频谱信息,我们对M进行了上采样,并在该形式的深层网络中添加了一个跳跃连接
↑M表示上采样LRMS图像,f W表示ResNet,这一项的动机与式(3)中表示的目标相同
正如我们将看到的,它强制X共享m的频谱内容。与变分方法不同,我们不将X与平滑核进行卷积,而是允许深度网络纠正高分辨率的差异。在我们的实验中,我们将此模型称为“光谱映射”,并使用ResNet模型进行fw;对应图3中的中间网络

Structural preservation

我们将PAN图像和上采样LRMS图像的高通内容输入到深度网络W中,修改后的模型为
为了获得由函数G表示的高通信息,我们从原始图像中减去使用平均滤波器找到的低通内容
对于LRMS图像,我们在获得高通含量后将样本提升到PAN的大小
我们观察到,由于↑M是低分辨率的,它可以被看作包含了X的低通光谱含量,这是↑M - X项模型。这使得网络f W可以学习映射,将PAN中包含的高通spa信息融合到x中。我们将↑G(M)输入到网络中,以了解PAN中的空间信息如何映射到x中的不同光谱波段。这个目标对应于图3中的PanNet

在图4中,我们展示了图3中左右网络的初步比较。HRMS和LRMS图像有8个光谱带,我们用灰度表示为平均年龄。图4©显示了(a)的ResNet重建的平均绝对误差(MAE)图像,而(d)显示了提出的PanNet的平均绝对误差(MAE)图像。很明显,光谱映射可以更好地模拟光谱内容(在较暗的光滑区域中很明显),而在高通域上训练网络可以保留边缘和细节,这些结论得到了我们大量定量实验的支持
正如引言中提到的,在高通域训练深度网络的另一个优点是消除PAN和HRMS图像在不同卫星上产生的不一致性

Network architecture

在保留光谱信息的同时恢复空间信息的目标激发了式(6)中提出的目标。此外,之前的变分方法试图通过使用先验图像假设[3,7]来提高性能,对应于式(1)中的f3。在这里,我们利用深度学习直接学习一个函数,该函数捕获了PAN和LRMS输入之间的关系,以及HRMS输出
我们采用带有卷积神经网络的ResNet结构作为方程(6)中的网络模型fw,卷积运算有助于多光谱图像不同波段间的耦合建模。因此,我们的网络结构通过以下操作表示

其中,W表示权重,b表示网络偏差,l = 1,…, L−2/2, Y l表示第l层的输出

因此,网络建模的是不包含在↑ M中的高频边缘信息。近似的惩罚是如式(6)所示的Frobenius范数

虽然我们架构的参数层遵循ResNet,但两者在光谱映射过程(底部方程)和网络的高通输入(顶部方程)方面是不同的。在我们的实验中,我们将这种PanNet框架与直接应用于图像域的ResNet进行了比较,以显示合并这种额外领域知识的明显优势。(我们再次回顾,这两种方法都没有应用于泛锐化问题。)我们还比较了最先进的PNN,它使用了与ResNet不同的深度CNN学习方法

Experiments

我们利用Worldview3卫星的数据进行了几次实验。该卫星的PAN分辨率为0.41m ~ 1.5m。我们使用随机梯度下降(SGD)来最小化方程(6)中的目标函数。在我们的实验中,我们提取了18,000个大小为64 × 64的PAN/LRMS/HRMS补丁对。我们将其分成90/10%用于训练/验证。我们比较了六种广泛使用的泛锐化方法:PRACS[8]、In- dusion[19]、PHLP[18]、BDSD[13]、SIRF[6,7]和PNN[21]。每个参数都使用了几个参数设置,并选择了最佳性能





Conclusion

我们提出了PanNet,这是一个基于泛锐化的两个目标:光谱和空间保存的深度模型
对于光谱保存,我们引入了一种称为“光谱映射”的技术,将上采样的LRMS图像添加到目标函数中,允许网络只关注图像中的细节
为了空间保存,我们在PAN和上采样LRMS图像的高通分量上训练网络参数
我们使用ResNet作为一个非常适合这项任务的深度模型,与目前最先进的方法(包括PNN和vanilla ResNet)相比,Pan-Net实现了更好的图像重建,并更好地推广到新卫星

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/168272.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker - 常用命令

Docker - 常用命令 帮助命令 docker version # 查看docker版本信息 docker info # 显示docker的系统信息,包括镜像和容器的数量 docker 命令 --help # 帮助命令官网帮助文档:https://docs.docker.com/engine/reference/commandline/cli/ 镜像…

Vue.Draggable 踩坑:add 事件与 change 事件中 newIndex 字段不同之谜

背景 最近在弄自定义表单,需要拖动组件进行表单设计,所以用到了 Vue.Draggable(中文文档)。Vue.Draggable 是一款基于 Sortable.js 实现的 vue 拖拽插件,文档挺简单的,用起来也方便,但没想到接下来给我遇到了灵异事件……

05预测识别-依托YOLO V8进行训练模型的识别——对视频中的目标进行跟踪统计

上文中详细介绍了如何对视频进行抽帧,并对帧的图像进行目标识别。但在日常工作中,我们也会遇到需要对目标进行跟踪统计的情况,比如我们需要连续统计某一类目标有多少个的时候,如果单纯从帧中抽取图像的话,系统将无法判断是否为同一目标,从而造成目标数量统计的重复,导致…

最新大麦订单生成器 大麦订单图一键生成

1、8.6全新版 本次更新了四种订单模板生成 多模板自由切换 2、在软件中输入生成的信息,这里输入的是商品信息,选择生成的商品图片,最后生成即可 新版大麦订单生成 四种模板图样式展示 这个样式图就是在大麦生成完的一个订单截图&#xff…

lv11 嵌入式开发 ARM体系结构理论基础(异常、微架构)4

1 异常概念 处理器在正常执行程序的过程中可能会遇到一些不正常的事件发生 这时处理器就要将当前的程序暂停下来转而去处理这个异常的事件 异常事件处理完成之后再返回到被异常打断的点继续执行程序 2 异常处理机制 不同的处理器对异常的处理的流程大体相似&#xff0c…

SSM图书管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 图书管理系统是一套完善的信息系统,结合springboot框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和 数据库,系统主要…

2023美团外卖商家销量

数据内容字段如下 外卖ID 外卖STR 外卖商家名称 地址 城市 省份 电话 纬度 经度 月销 起送价 评分 经营许可证 食品许可证 资源下载:https://download.csdn.net/download/WANJIAWEN1002/88444367?spm1001.2014.3001.5503

排序算法之-冒泡

顺序排序算法原理 从头开始遍历未排序数列,遍历时比较相邻的两个元素,前面的大于后面的,则双方交换位置,一直比较到末尾,这样最大的元素会出现在末尾,接着再依次从头开始遍历剩余未排序的元素,…

Python自动化测试selenium指定截图文件名方法

这篇文章主要介绍了Python自动化测试selenium指定截图文件名方法,Selenium 支持 Web 浏览器的自动化,它提供一套测试函数,用于支持 Web 自动化测试,下文基于python实现指定截图文件名方法,需要的小伙伴可以参考一下 前…

drawio连接线使用技巧和功能大全

drawio连接线使用技巧和功能大全 drawio是一款强大的图表绘制软件,支持在线云端版本以及windows, macOS, linux安装版。 如果想在线直接使用,则直接输入网址draw.io或者使用drawon(桌案), drawon.cn内部完整的集成了drawio的所有功能,并实现了…

使用Redis实现文章阅读量、收藏、点赞数量记录功能

目录 一、前言二、业务分析三、Redis数据结构选择分析和实现3.1、三个数据缓存都分别使用 字符串 结构计数器存储对应数量值3.2、三个数据缓存使用一个 Hash 结构存储3.3、阅读量使用字符串结构计算器,收藏和点赞分别使用 Set 集合存储 四、总结 一、前言 在博客中会…

排序算法的空间复杂度和时间复杂度

一、排序算法的时间复杂度和空间复杂度 排序算法 平均时间复杂度 最坏时间复杂度 最好时间复杂度 空间复杂度 稳定性 冒泡排序 O(n) O(n) O(n) O(1) 稳定 直接选择排序 O(n) O(n) O(n) O(1) 不稳定 直接插入排序 O(n) O(n) O(n) O(1) 稳定 快速排序 O(n…