Spark的转换算子和操作算子

Transformation转换算子

1.1 Value类型

1)创建包名:com.shangjack.value

1.1.1 map()映射

参数f是一个函数可以写作匿名子类,它可以接收一个参数。当某个RDD执行map方法时,会遍历该RDD中的每一个数据项,并依次应用f函数,从而产生一个新的RDD。即,这个新RDD中的每一个元素都是原来RDD中每一个元素依次应用f函数而得到的。

1)具体实现

package com.shangjack.value;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

public class Test01_Map {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<String> lineRDD = sc.textFile("input/1.txt");

        // 需求:每行结尾拼接||

        // 两种写法  lambda表达式写法(匿名函数) 

        JavaRDD<String> mapRDD = lineRDD.map(s -> s + "||");

        // 匿名函数写法 

        JavaRDD<String> mapRDD1 = lineRDD.map(new Function<String, String>() {

            @Override

            public String call(String v1) throws Exception {

                return v1 + "||";

            }

        });

        for (String s : mapRDD.collect()) {

            System.out.println(s);

        }

        // 输出数据的函数写法

        mapRDD1.collect().forEach(a -> System.out.println(a));

        mapRDD1.collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.1.2 flatMap()扁平化

1)功能说明

与map操作类似,将RDD中的每一个元素通过应用f函数依次转换为新的元素,并封装到RDD中。

区别:在flatMap操作中,f函数的返回值是一个集合,并且会将每一个该集合中的元素拆分出来放到新的RDD中。

2)需求说明:创建一个集合,集合里面存储的还是子集合,把所有子集合中数据取出放入到一个大的集合中。

4)具体实现:

package com.shangjack.value;

import org.apache.commons.collections.ListUtils;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.FlatMapFunction;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Iterator;

import java.util.List;

public class Test02_FlatMap {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        ArrayList<List<String>> arrayLists = new ArrayList<>();

        arrayLists.add(Arrays.asList("1","2","3"));

        arrayLists.add(Arrays.asList("4","5","6"));

        JavaRDD<List<String>> listJavaRDD = sc.parallelize(arrayLists,2);

        // 对于集合嵌套的RDD 可以将元素打散

        // 泛型为打散之后的元素类型

        JavaRDD<String> stringJavaRDD = listJavaRDD.flatMap(new FlatMapFunction<List<String>, String>() {

            @Override

            public Iterator<String> call(List<String> strings) throws Exception {

                return strings.iterator();

            }

        });

        stringJavaRDD. collect().forEach(System.out::println);

        // 通常情况下需要自己将元素转换为集合

        JavaRDD<String> lineRDD = sc.textFile("input/2.txt");

        JavaRDD<String> stringJavaRDD1 = lineRDD.flatMap(new FlatMapFunction<String, String>() {

            @Override

            public Iterator<String> call(String s) throws Exception {

                String[] s1 = s.split(" ");

                return Arrays.asList(s1).iterator();

            }

        });

        stringJavaRDD1. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.1.3 groupBy()分组

1)功能说明:分组,按照传入函数的返回值进行分组。将相同的key对应的值放入一个迭代器。

2)需求说明:创建一个RDD,按照元素模以2的值进行分组。

3)具体实现

package com.shangjack.value;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import java.util.Arrays;

public class Test03_GroupBy {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        // 泛型为分组标记的类型

        JavaPairRDD<Integer, Iterable<Integer>> groupByRDD = integerJavaRDD.groupBy(new Function<Integer, Integer>() {

            @Override

            public Integer call(Integer v1) throws Exception {

                return v1 % 2;

            }

        });

        groupByRDD.collect().forEach(System.out::println);

        // 类型可以任意修改

        JavaPairRDD<Boolean, Iterable<Integer>> groupByRDD1 = integerJavaRDD.groupBy(new Function<Integer, Boolean>() {

            @Override

            public Boolean call(Integer v1) throws Exception {

                return v1 % 2 == 0;

            }

        });

        groupByRDD1. collect().forEach(System.out::println);

Thread.sleep(600000);

        // 4. 关闭sc

        sc.stop();

    }

}

  • groupBy会存在shuffle过程
  • shuffle:将不同的分区数据进行打乱重组的过程
  • shuffle一定会落盘。可以在local模式下执行程序,通过4040看效果。

1.1.4 filter()过滤

1)功能说明

接收一个返回值为布尔类型的函数作为参数。当某个RDD调用filter方法时,会对该RDD中每一个元素应用f函数,如果返回值类型为true,则该元素会被添加到新的RDD中。

2)需求说明:创建一个RDD,过滤出对2取余等于0的数据

3)代码实现

package com.shangjack.value;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import java.util.Arrays;

public class Test04_Filter {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        JavaRDD<Integer> filterRDD = integerJavaRDD.filter(new Function<Integer, Boolean>() {

            @Override

            public Boolean call(Integer v1) throws Exception {

                return v1 % 2 == 0;

            }

        });

        filterRDD. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.1.5 distinct()去重

1)功能说明:对内部的元素去重,并将去重后的元素放到新的RDD中。

2)代码实现

package com.shangjack.value;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

public class Test05_Distinct {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5, 6), 2);

        // 底层使用分布式分组去重  所有速度比较慢,但是不会OOM

        JavaRDD<Integer> distinct = integerJavaRDD.distinct();

        distinct. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

注意:distinct会存在shuffle过程

1.1.6 sortBy()排序

1)功能说明

该操作用于排序数据。在排序之前,可以将数据通过f函数进行处理,之后按照f函数处理的结果进行排序,默认为正序排列。排序后新产生的RDD的分区数与原RDD的分区数一致。Spark的排序结果是全局有序。

2)需求说明:创建一个RDD,按照数字大小分别实现正序和倒序排序

3)代码实现:

package com.shangjack.value;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import java.util.Arrays;

public class Test6_SortBy {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(5, 8, 1, 11, 20), 2);

        // (1)泛型为以谁作为标准排序  (2) true为正序  (3) 排序之后的分区个数

        JavaRDD<Integer> sortByRDD = integerJavaRDD.sortBy(new Function<Integer, Integer>() {

            @Override

            public Integer call(Integer v1) throws Exception {

                return v1;

            }

        }, true, 2);

        sortByRDD. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.2 Key-Value类型

1)创建包名:com.shangjack.keyvalue

要想使用Key-Value类型的算子首先需要使用特定的方法转换为PairRDD

package com.shangjack.keyValue;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

import java.util.Arrays;

public class Test01_pairRDD{

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        JavaPairRDD<Integer, Integer> pairRDD = integerJavaRDD.mapToPair(new PairFunction<Integer, Integer, Integer>() {

            @Override

            public Tuple2<Integer, Integer> call(Integer integer) throws Exception {

                return new Tuple2<>(integer, integer);

            }

        });

        pairRDD. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.2.1 mapValues()只对V进行操作

1)功能说明:针对于(K,V)形式的类型只对V进行操作

2)需求说明:创建一个pairRDD,并将value添加字符串"|||"

4)代码实现:

package com.shangjack.keyValue;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import scala.Tuple2;

import java.util.Arrays;

public class Test02_MapValues {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaPairRDD<String, String> javaPairRDD = sc.parallelizePairs(Arrays.asList(new Tuple2<>("k", "v"), new Tuple2<>("k1", "v1"), new Tuple2<>("k2", "v2")));

        // 只修改value 不修改key

        JavaPairRDD<String, String> mapValuesRDD = javaPairRDD.mapValues(new Function<String, String>() {

            @Override

            public String call(String v1) throws Exception {

                return v1 + "|||";

            }

        });

        mapValuesRDD. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.2.2 groupByKey()按照K重新分组

1)功能说明

groupByKey对每个key进行操作,但只生成一个seq,并不进行聚合。

该操作可以指定分区器或者分区数(默认使用HashPartitioner)

2)需求说明:统计单词出现次数

4)代码实现:

package com.shangjack.keyValue;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

import java.util.Arrays;

public class Test03_GroupByKey {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<String> integerJavaRDD = sc.parallelize(Arrays.asList("hi","hi","hello","spark" ),2);

        // 统计单词出现次数

        JavaPairRDD<String, Integer> pairRDD = integerJavaRDD.mapToPair(new PairFunction<String, String, Integer>() {

            @Override

            public Tuple2<String, Integer> call(String s) throws Exception {

                return new Tuple2<>(s, 1);

            }

        });

        // 聚合相同的key

        JavaPairRDD<String, Iterable<Integer>> groupByKeyRDD = pairRDD.groupByKey();

        // 合并值

        JavaPairRDD<String, Integer> result = groupByKeyRDD.mapValues(new Function<Iterable<Integer>, Integer>() {

            @Override

            public Integer call(Iterable<Integer> v1) throws Exception {

                Integer sum = 0;

                for (Integer integer : v1) {

                    sum += integer;

                }

                return sum;

            }

        });

        result. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}}

1.2.3 reduceByKey()按照K聚合V

1)功能说明:该操作可以将RDD[K,V]中的元素按照相同的K对V进行聚合。其存在多种重载形式,还可以设置新RDD的分区数。

2)需求说明:统计单词出现次数

3)代码实现:

package com.shangjack.keyValue;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

import java.util.Arrays;

public class Test04_ReduceByKey {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<String> integerJavaRDD = sc.parallelize(Arrays.asList("hi","hi","hello","spark" ),2);

        // 统计单词出现次数

        JavaPairRDD<String, Integer> pairRDD = integerJavaRDD.mapToPair(new PairFunction<String, String, Integer>() {

            @Override

            public Tuple2<String, Integer> call(String s) throws Exception {

                return new Tuple2<>(s, 1);

            }

        });

        // 聚合相同的key

        JavaPairRDD<String, Integer> result = pairRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {

            @Override

            public Integer call(Integer v1, Integer v2) throws Exception {

                return v1 + v2;

            }

        });

        result. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.2.4 reduceByKey和groupByKey区别

1)reduceByKey:按照key进行聚合,在shuffle之前有combine(预聚合)操作,返回结果是RDD[K,V]。

2)groupByKey:按照key进行分组,直接进行shuffle。

3)开发指导:在不影响业务逻辑的前提下,优先选用reduceByKey。求和操作不影响业务逻辑,求平均值影响业务逻辑。影响业务逻辑时建议先对数据类型进行转换再合并。

package com.shangjack.keyValue;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

import java.util.Arrays;

public class Test06_ReduceByKeyAvg {

    public static void main(String[] args) throws InterruptedException {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaPairRDD<String, Integer> javaPairRDD = sc.parallelizePairs(Arrays.asList(new Tuple2<>("hi", 96), new Tuple2<>("hi", 97), new Tuple2<>("hello", 95), new Tuple2<>("hello", 195)));

        // ("hi",(96,1))

        JavaPairRDD<String, Tuple2<Integer, Integer>> tuple2JavaPairRDD = javaPairRDD.mapValues(new Function<Integer, Tuple2<Integer, Integer>>() {

            @Override

            public Tuple2<Integer, Integer> call(Integer v1) throws Exception {

                return new Tuple2<>(v1, 1);

            }

        });

        // 聚合RDD

        JavaPairRDD<String, Tuple2<Integer, Integer>> reduceRDD = tuple2JavaPairRDD.reduceByKey(new Function2<Tuple2<Integer, Integer>, Tuple2<Integer, Integer>, Tuple2<Integer, Integer>>() {

            @Override

            public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> v1, Tuple2<Integer, Integer> v2) throws Exception {

                return new Tuple2<>(v1._1 + v2._1, v1._2 + v2._2);

            }

        });

        // 相除

        JavaPairRDD<String, Double> result = reduceRDD.mapValues(new Function<Tuple2<Integer, Integer>, Double>() {

            @Override

            public Double call(Tuple2<Integer, Integer> v1) throws Exception {

                return (new Double(v1._1) / v1._2);

            }

        });

        result. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

1.2.5 sortByKey()按照K进行排序

1)功能说明

在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

2)需求说明:创建一个pairRDD,按照key的正序和倒序进行排序

3)代码实现:

package com.shangjack.keyValue;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;

import scala.Tuple2;

import java.util.Arrays;

public class Test05_SortByKey {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaPairRDD<Integer, String> javaPairRDD = sc.parallelizePairs(Arrays.asList(new Tuple2<>(4, "a"), new Tuple2<>(3, "c"), new Tuple2<>(2, "d")));

        // 填写布尔类型选择正序倒序

        JavaPairRDD<Integer, String> pairRDD = javaPairRDD.sortByKey(false);

        pairRDD. collect().forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

2 Action行动算子

行动算子是触发了整个作业的执行。因为转换算子都是懒加载,并不会立即执行。

1)创建包名:com.shangjack.action

2.1 collect()以数组的形式返回数据集

1)功能说明:在驱动程序中,以数组Array的形式返回数据集的所有元素。

注意:所有的数据都会被拉取到Driver端,慎用

2)需求说明:创建一个RDD,并将RDD内容收集到Driver端打印

package com.shangjack.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

import java.util.List;

public class Test01_Collect {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        List<Integer> collect = integerJavaRDD.collect();

        for (Integer integer : collect) {

            System.out.println(integer);

        }

        // 4. 关闭sc

        sc.stop();

    }

}

2.2 count()返回RDD中元素个数

1)功能说明:返回RDD中元素的个数

3)需求说明:创建一个RDD,统计该RDD的条数

package com.shangjack.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

public class Test02_Count {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        long count = integerJavaRDD.count();

        System.out.println(count);

        // 4. 关闭sc

        sc.stop();

    }

}

2.3 first()返回RDD中的第一个元素

1)功能说明:返回RDD中的第一个元素

2)需求说明:创建一个RDD,返回该RDD中的第一个元素

package com.shangjack.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

public class Test03_First {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        Integer first = integerJavaRDD.first();

        System.out.println(first);

        // 4. 关闭sc

        sc.stop();

    }

}

2.4 take()返回由RDD前n个元素组成的数组

1)功能说明:返回一个由RDD的前n个元素组成的数组

2)需求说明:创建一个RDD,取出前两个元素

package com.shangjack.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

import java.util.List;

public class Test04_Take {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        List<Integer> list = integerJavaRDD.take(3);

        list.forEach(System.out::println);

        // 4. 关闭sc

        sc.stop();

    }

}

2.5 countByKey()统计每种key的个数

1)功能说明:统计每种key的个数

2)需求说明:创建一个PairRDD,统计每种key的个数

package com.shangjack.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;

import scala.Tuple2;

import java.util.Arrays;

import java.util.Map;

public class Test05_CountByKey {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaPairRDD<String, Integer> pairRDD = sc.parallelizePairs(Arrays.asList(new Tuple2<>("a", 8), new Tuple2<>("b", 8), new Tuple2<>("a", 8), new Tuple2<>("d", 8)));

        Map<String, Long> map = pairRDD.countByKey();

        System.out.println(map);

        // 4. 关闭sc

        sc.stop();

    }

}

2.6 save相关算子

1)saveAsTextFile(path)保存成Text文件

功能说明:将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

2)saveAsObjectFile(path) 序列化成对象保存到文件

功能说明:用于将RDD中的元素序列化成对象,存储到文件中。

3)代码实现

package com.shangjack.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import scala.Tuple2;

import java.util.Arrays;

public class Test06_Save {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),2);

        integerJavaRDD.saveAsTextFile("output");

        integerJavaRDD.saveAsObjectFile("output1");

        // 4. 关闭sc

        sc.stop();

    }

}

2.7 foreach()遍历RDD中每一个元素

2)需求说明:创建一个RDD,对每个元素进行打印

package com.shangjack.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.VoidFunction;

import java.util.Arrays;

public class Test07_Foreach {

    public static void main(String[] args) {

        // 1.创建配置对象

        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore");

        // 2. 创建sparkContext

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> integerJavaRDD = sc.parallelize(Arrays.asList(1, 2, 3, 4),4);

        integerJavaRDD.foreach(new VoidFunction<Integer>() {

            @Override

            public void call(Integer integer) throws Exception {

                System.out.println(integer);

            }

        });

        // 4. 关闭sc

        sc.stop();

    }

}

2.8 foreachPartition ()遍历RDD中每一个分区

package com.shangjack.spark.action;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.VoidFunction;

import java.util.Arrays;

import java.util.Iterator;

public class Test08_ForeachPartition {

    public static void main(String[] args) {

        // 1. 创建配置对象

        SparkConf conf = new SparkConf().setAppName("core").setMaster("local[*]");

        // 2. 创建sc环境

        JavaSparkContext sc = new JavaSparkContext(conf);

        // 3. 编写代码

        JavaRDD<Integer> parallelize = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5, 6), 2);

        // 多线程一起计算   分区间无序  单个分区有序

        parallelize.foreachPartition(new VoidFunction<Iterator<Integer>>() {

            @Override

            public void call(Iterator<Integer> integerIterator) throws Exception {

                // 一次处理一个分区的数据

                while (integerIterator.hasNext()) {

                    Integer next = integerIterator.next();

                    System.out.println(next);

                }

            }

        });

        // 4. 关闭sc

        sc.stop();

    }

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/169140.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s 部署mqtt —— 筑梦之路

mqtt是干嘛的&#xff0c;网上有很多资料&#xff0c;这里就不再赘述。 --- apiVersion: apps/v1 kind: Deployment metadata:labels:app: mqttname: mqttnamespace: default spec:replicas: 1selector:matchLabels:app: mqttstrategy:rollingUpdate:maxSurge: 25%maxUnavaila…

神经网络(第二周)

一、简介 1.1 需求预测示例 1.1.1 逻辑回归算法 根据价格预测商品是否畅销。特征&#xff1a;T恤的价格&#xff1b;分类&#xff1a;销售量高1/销售量低0&#xff1b;使用逻辑回归算法进行分类&#xff0c;拟合效果如下图所示&#xff1a; 1.1.2 神经元和神经网络 将逻辑回…

Python开源项目PGDiff——人脸重建(Face Restoration),模糊清晰、划痕修复及黑白上色的实践

python ansconda 等的下载、安装等请参阅&#xff1a; Python开源项目CodeFormer——人脸重建&#xff08;Face Restoration&#xff09;&#xff0c;模糊清晰、划痕修复及黑白上色的实践https://blog.csdn.net/beijinghorn/article/details/134334021 友情提示&#xff1a; …

算法导论笔记5:贪心算法

P216 第15章动态规划 最优子结构 具有它可能意味着适合应用贪心策略 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。 剪切-粘贴技术证明 每个子问题的解就是它本身的最优解&#xff08;利用反证法&#xff0…

【java:牛客每日三十题总结-6】

java:牛客每日三十题总结 总结如下 总结如下 transient 变量和序列化有关&#xff0c;这是一个空接口&#xff0c;起标记作用&#xff0c;具体的序列化由ObjectOutputStream和ObjectInputStream完成。transient修饰的变量不能被序列化&#xff0c;static变量不管加没加transie…

element ui中Select 选择器,自定义显示内容

正常情况下&#xff0c;下拉框选项展示内容&#xff0c;就是选择后展示的label内容 如图所示&#xff1a; 但是要想自定义选项内容&#xff0c;但是展示内容不是选项label的内容&#xff0c;可以在el-option标签内增加div进行自定义选项label展示&#xff0c;但选择后结果展示…

RabbitMQ的 五种工作模型

RabbitMQ 其实一共有六种工作模式&#xff1a; 简单模式&#xff08;Simple&#xff09;、工作队列模式&#xff08;Work Queue&#xff09;、 发布订阅模式&#xff08;Publish/Subscribe&#xff09;、路由模式&#xff08;Routing&#xff09;、通配符模式&#xff08;Topi…

高频SQL50题(基础版)-3

文章目录 主要内容一.SQL练习题1.1174-即时食物配送代码如下&#xff08;示例&#xff09;: 2.550-游戏玩法分析代码如下&#xff08;示例&#xff09;: 3.2356-每位教师所教授的科目种类的数量代码如下&#xff08;示例&#xff09;: 4.1141-查询近30天活跃用户数代码如下&…

Python文件、文件夹操作汇总

目录 一、概览 二、文件操作 2.1 文件的打开、关闭 2.2 文件级操作 2.3 文件内容的操作 三、文件夹操作 四、常用技巧 五、常见使用场景 5.1 查找指定类型文件 5.2 查找指定名称的文件 5.3 查找指定名称的文件夹 5.4 指定路径查找包含指定内容的文件 一、概览 ​在…

照片放大软件 Topaz Gigapixel AI mac中文版简介

Topaz Gigapixel AI mac是一款使用人工智能功能扩展图像的桌面应用程序&#xff0c;同时添加自然细节以获得惊人的效果。使用深度学习技术&#xff0c;A.I.Gigapixel™可以放大图像并填写其他调整大小的产品遗漏的细节&#xff0c;使用A.I.Gigapixel™&#xff0c;您可以裁剪照…

LeetCode 面试题 16.20. T9键盘

文章目录 一、题目二、C# 题解 一、题目 在老式手机上&#xff0c;用户通过数字键盘输入&#xff0c;手机将提供与这些数字相匹配的单词列表。每个数字映射到0至4个字母。给定一个数字序列&#xff0c;实现一个算法来返回匹配单词的列表。你会得到一张含有有效单词的列表。映射…

Xilinx FPGA平台DDR3设计详解(一):DDR SDRAM系统框架

DDR SDRAM&#xff08;双倍速率同步动态随机存储器&#xff09;是一种内存技术&#xff0c;它可以在时钟信号的上升沿和下降沿都传输数据&#xff0c;从而提高数据传输的速率。DDR SDRAM已经发展了多代&#xff0c;包括DDR、DDR2、DDR3、DDR4和DDR5&#xff0c;每一代都有不同的…