Python中的时间序列分析模型ARIMA

大家好,时间序列分析广泛用于预测和预报时间序列中的未来数据点。ARIMA模型被广泛用于时间序列预测,并被认为是最流行的方法之一。本文我们将学习如何在Python中搭建和评估用于时间序列预测的ARIMA模型。

ARIMA模型

ARIMA模型是一种用于分析和预测时间序列数据的统计模型。ARIMA方法明确适用于时间序列中的常见结构,为进行精确的时间序列预测提供了简单而强大的方法。

ARIMA是AutoRegressive Integrated Moving Average的缩写。它结合了三个关键方面:

  • 自回归(AR):使用当前观测值与滞后观测值之间的相关性建立的模型。滞后观测值的数量称为滞后阶数或p。

  • 积分(I):通过对原始观测值进行差分来使时间序列平稳。差分操作的次数称为d。

  • 移动平均(MA):模型考虑了当前观测值与应用于过去观测值的移动平均模型的残差错误之间的关系。移动平均窗口的大小为阶数或q。

ARIMA模型的表示为ARIMA(p,d,q),其中p、d和q用整数值替代以指定所使用的确切模型。

采用ARIMA模型时的关键假设:

  • 时间序列是由基础的ARIMA过程生成的。

  • 参数p、d和q必须根据原始观测值进行适当的指定。

  • 在拟合ARIMA模型之前,时间序列数据必须通过差分使其平稳。

  • 如果模型拟合良好,残差应该是不相关且服从正态分布的。

总而言之,ARIMA模型为建模时间序列数据提供了结构化和可配置的方法,用于预测等目的。接下来,本文将介绍如何在Python中拟合ARIMA模型。

Python代码示例

在本教程中,我们将使用Kaggle上提供的Netflix证券数据来使用ARIMA模型预测Netflix价格。

本示例将加载带有“日期”列作为索引的证券价格数据集。

import pandas as pdnet_df = pd.read_csv("Netflix_stock_history.csv", index_col="Date", parse_dates=True)
net_df.head(3)

图片

可以使用pandas的plot函数来可视化价格和成交量随时间的变化,很明显其价格呈指数增长。

net_df[["Close","Volume"]].plot(subplots=True, layout=(2,1));

图片

本示例的数据集已经被分成训练集和测试集,并且开始训练ARIMA模型,然后进行了第一次预测。使用通用的ARIMA模型得到了一个糟糕的结果,生成了一条平直的线,因此本示例决定尝试滚动预测方法。

from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error, mean_absolute_error
import mathtrain_data, test_data = net_df[0:int(len(net_df)*0.9)], net_df[int(len(net_df)*0.9):]train_arima = train_data['Open']
test_arima = test_data['Open']history = [x for x in train_arima]
y = test_arima
# 进行第一次预测
predictions = list()
model = ARIMA(history, order=(1,1,0))
model_fit = model.fit()
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(y[0])

在处理时间序列数据时,由于依赖于先前的观察结果,通常需要进行滚动预测,一种方法是在收到每个新观察结果后重新创建模型。

为了跟踪所有观察结果,可以手动维护一个名为history的列表,该列表最初包含训练数据,并在每次迭代时将新的观察结果追加到其中。这种方法可以帮助我们获得准确的预测模型。

# 滚动预测
for i in range(1, len(y)):# 预测model = ARIMA(history, order=(1,1,0))model_fit = model.fit()yhat = model_fit.forecast()[0]# 反转转换预测值predictions.append(yhat)# 观察结果obs = y[i]history.append(obs)

本示例的滚动预测ARIMA模型在简单实现的基础上显示出了100%的改进,产生了令人印象深刻的结果。

# 报告性能
mse = mean_squared_error(y, predictions)
print('MSE: '+str(mse))
mae = mean_absolute_error(y, predictions)
print('MAE: '+str(mae))
rmse = math.sqrt(mean_squared_error(y, predictions))
print('RMSE: '+str(rmse))
MSE: 116.89611817706545
MAE: 7.690948135967959
RMSE: 10.811850821069696

接下来将实际结果与预测结果进行可视化和比较,很明显本示例的模型进行了高度准确的预测。

import matplotlib.pyplot as plt
plt.figure(figsize=(16,8))
plt.plot(net_df.index[-600:], net_df['Open'].tail(600), color='green', label = 'Train Stock Price')
plt.plot(test_data.index, y, color = 'red', label = 'Real Stock Price')
plt.plot(test_data.index, predictions, color = 'blue', label = 'Predicted Stock Price')
plt.title('Netflix Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Netflix Stock Price')
plt.legend()
plt.grid(True)
plt.savefig('arima_model.pdf')
plt.show()

图片

本文中我们提供了ARIMA模型的概述以及如何在Python中实现时间序列预测,ARIMA方法提供了一种灵活而结构化的方式进行时间序列数据建模,它依赖于先前的观察结果和过去的预测误差。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/180231.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python科研绘图:绘制X-bar图

目录 1.X-bar 图的基本概念 2.X-bar 图的绘制过程 3.X-bar 图的优势 4.X-bar 图的绘制 1.X-bar 图的基本概念 X-bar控制图是一种统计工具,用于监控和控制生产过程中的质量变量。它是过程能力分析和统计过程控制(SPC,Statistical Process…

供应商选择和评估:如何寻找合适的供应商并与其合作

如果供应商不能按时交货或产品质量低劣,制造商的生产计划就会延误;客户交货将被延迟,商品可能被退回,你的公司声誉也将受损。 要在当今竞争激烈的市场中取得成功,你需要一流的、价格合理且来源可靠的原材料和服务&…

HTTP1.1协议详解

目录 协议介绍协议的特点存在的问题协议优化方案与HTTP 1.0协议的区别 协议介绍 HTTP 1.1是一种基于文本的互联网实体信息交互协议,是Web上任何数据交换和客户端-服务器交互的基础。它允许获取各种类型的资源,如HTML文档,并支持在互联网上交…

wps卸载和重新安装

卸载WPS sudo apt remove wps-office安装WPS 下载地址 安装命令 sudo dpkg -i wps-office_11.1.0.11708_amd64.debsunyuhuasunyuhua-HKF-WXX:~$ sudo dpkg -i wps-office_11.1.0.11708_amd64.deb 正在选中未选择的软件包 wps-office。 (正在读取数据库 ... 系统当前共安装…

企业APP软件定制开发的关键步骤|网站小程序搭建

企业APP软件定制开发的关键步骤|网站小程序搭建 在当今数字化快速发展的时代,企业越来越意识到拥有自己的APP软件对于提高业务效率和用户体验的重要性。然而,企业APP软件定制开发并不是一项简单的任务,它需要经过一系列关键步骤来确保最终的产…

【miniQMT实盘量化3】获取历史行情数据

前言 上篇文章,介绍了如何与miniQMT建立连接,这篇开始,我们会深入探讨miniQMT的每个功能接口。首先,从获取历史数据开始。 迅投的官方文档目前已经更新,miniQMT对应原生API部分 接口汇总 与历史行情数据相关的接口&a…

EfficientNet:通过模型效率彻底改变深度学习

一、介绍 EfficientNet 是深度学习领域的里程碑,代表了神经网络架构方法的范式转变。EfficientNet 由 Google Research 的 Mingxing Tan 和 Quoc V. Le 开发,在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了 EfficientNet 背后…

SystemVerilog学习 (6)——验证平台

一、概述 测试平台(Testbench)是整个验证系统的总称。它包含了验证系统的各个组件、组件之间的互联关系,测试平台的配置与控制等, 从更系统的意义来讲,它还包括编译仿真的流程、结果分析报告和覆盖率检查等。 从狭义上…

微信小程序渲染的富文本里面除了img标签外什么都没有,该如何设置img的大小

微信小程序富文本渲染&#xff1a; <rich-text nodes"{{content}}"style"{{style}}" ></rich-text> content是接口得到的值 let cont object.contentlet a cont.replace(/<img/gi,<img style"max-width:94%;height:auto;margi…

S-Clustr(影子集群) 重磅更新!黑入工业PLC设备!

公告 项目地址:https://github.com/MartinxMax/S-Clustr 更新预告内容进度SIEMENS S7-200 SMART远程控制进行中 开发人员Blog联系方式提交时间提交内容授权情况ASH_HHhttps://blog.csdn.net/m0_53711047/article/details/133691537?spm1001.2014.3001.5502匿名2023-10-16 2…

【Java】详解多线程同步的三种方式

&#x1f33a;个人主页&#xff1a;Dawn黎明开始 &#x1f380;系列专栏&#xff1a;Java ⭐每日一句&#xff1a;等风来&#xff0c;不如追风去 &#x1f4e2;欢迎大家&#xff1a;关注&#x1f50d;点赞&#x1f44d;评论&#x1f4dd;收藏⭐️ 文章目录 一.&#x1f510;线…

总结1057

考研倒计38天 极限冲刺day1 今日共计学习13h33m&#xff0c;为了能走出备考的低谷阶段&#xff0c;来一场与自我的较量。在尽可能保证效率的情况下&#xff0c;玩命干。考研这件事&#xff0c;从来不是因为看到了希望才去努力&#xff0c;而是玩命努力后才看到希望。