场景交互与场景漫游-交运算与对象选取(8-1)

交运算与对象选取

        在面对大规模的场景管理时,场景图形的交运算图形对象的拾取变成了一项基本工作。OSG作为一个场景管理系统,自然也实现了场景图形的交运算,交运算主要封装在osgUtil 工具中在OSG中,osgUtil是一个非常强有力的工具,集合了场图形处理、几何体修改工具及高层次的遍历几个功能。

交运算

        交运算(Intersection)本身是一个非常复杂的立体几何问题。当在阅读这一部分源代码时,读者会发现如果有非常丰富的立体几何思想见解,将能够很快理解源代码,如果没有的话,即使笔者在这里分析源代码也是没有用的。当然,作为一个应用者没有必要去过多关注底层是如何实现的。

        关于交运算,OSG本身的实现也是比较局限的,但是对于普通应用已经足够了,可以用一个继承关系图表示出来,如图8-21所示。

图8-21 osgUtil::Intersector 的继承关系及派生图

从继承关系图中可以看出,所有的交运算都共用一个父类osgUtil::Intersector类。下面对这个类的作用逐一说明。

  • osgUtil::Intersector:是一个纯虚类它定义了相交测试的接口osgUtil库从osgUtil::Intersection继承了多个类,适用于各种类型的几何体(如线段、多边形等)。执行相交测试时,应用程序将继承自osgUtil::Intersector的某个类实例化,再将其传递给 osgUtil::IntersectionVisitor 的实例,并请求该实例返回数据以获取交运算的结果。
  • osgUtil::LineSegmentIntersector继承自osgUtil::Intersector 类,用于检测指定线段和场景图形之间的相交情况,并向程序提供查询相交测试结果的函数。该类提供了一种定义射线的方法。它包括两个osg::Vec3实例,一个用于定义线段的起点,另一个用于定义终点。当交集测试被触发时,它将检测射线的相交情况并执行相应的操作。这个在示例显示位置及拾取示例中会用到,可以根据鼠标的位置初始化一个osgUtil::LineSegmentIntersector类的对象可以指定一个特定的线段来执行相交检测,在构造函数中即可初始化。
// 创建一个线段交集检测对象
osgUtil::LineSegmentIntersector::Intersections intersections:
viewer->computelntersections(x,y,intersections)

        通过相交运算,更多的是希望得到相交的点,可以通过申请一个迭代器来实现,代码如下:

// 得到相交交集的交点for(osgUtil::LineSegmentIntersector::Intersections::iterator hitr = intersections.begin();hitr!=intersections.end();++hitr)
{// 输入流cout<<”Mouse in world X:”<<hitr->getWorldIntersectPoint().x()<<” Y:”<<hitr->getWorldIntersectPoint().y()<<” Z:”<<hitr->getWorldIntersectPoint().z()<<endl;
}
  • osgUtil::PolytopeIntersector与osgUtil::LineSegmentIntersector类似,不过,该类用于检测由一系列平面构成的多面体的相交运算。当鼠标单击场景图形中某一区域,希望拾取到鼠标位置附近的一个封闭多面体区域时,osgUtil::PolytopeIntersector类最实用。
  • osgUtil::PlaneIntersector,与osgUtil::LineSegmentIntersector类似,用于检测出一系列平面构成的平面的相交运算。

        osgUtil::IntersectionVisitor是一个比较特殊的类,它不直接继承自osgUtil::Intersector,继承关系图如图8-22所示。

图8-22 osgUtil::IntersectionVisitor 的继承关系图

        从继承关系图可以看出,它继承自osg::NodeVisitor,创建和触发机制与osg::NodeVisitor 实例大致相似。访问器需要维护一个进行交集测试的线段列表,而对于其中的每一条线段,访问器都会创建一个交点列表(osgUtil::IntersectVisitor::HitList 实例),它主要用于搜索场景图形中与指定几何体相交的节点。而最后相交测试的工作将在osgUtil::Intersector 的继承类中完成。在前面的自定义漫游操作器中,碰掩检测就是采用该类,最后的检测工作在osgUtil::LineSegmentIntersector 中完成,创建的过程如下:

// 创建一个交集访问器
osgUtil::IntersectVisitor ivXY;
// 根据新的位置得到两条线段检测
osg::ref_ptr<LineSegment> lineXY = new osg::LineSegment(newPos, m_vPosition);
osg::ref_ptr<osg::LineSegment> lineZ = new osg::LineSegment(newPos1 + osg::Vec3(0.0,0.0,10.0), newPos1 - osg::Vec3(0.0,0.0,-10.0));
// 添加两条线段
ivXY.addLineSegment(lineZ.get());
ivXY.addLineSegment(lineXY.get());// 开启交集检测
m_pHowViewer->getSceneData()->accept(ivXY);

        交点列表(osgUtil::IntersectVisitor:HitList)的作用为:一条单一的线段可能与场景中的多个几何体实例(或者多次与同一个几何体)产生交集。对于每一条参与交集测试的线段,系统均会产生一个列表,这个列表包含了所有交集测试产生的 Hit 实例。如果没有监测到任何交集,该列表保持为空。

显示位置及拾取示例

        显示位置及拾取示例的代码如程序清单 8-10所示

/******************************************* 显示位置及拾取示例 *************************************/
// pick 事件处理器
class CPickHandler:public osgGA::GUIEventHandler
{
public:// 构造函数CPickHandler(osg::ref_ptr<osgText::Text> updateText) :_updateText(updateText){}// 析构函数~CPickHandler(){}// 事件处理bool handle(const osgGA::GUIEventAdapter &ea, osgGA::GUIActionAdapter &aa);// pickvirtual void pick(osg::ref_ptr<osgViewer::Viewer> viewer, const osgGA::GUIEventAdapter &ea);// 设置显示内容void setLabel(const std::string &name){_updateText->setText(name);}
protected:// 得到当前视图矩阵osg::Vec3 position;osg::Vec3 center;osg::Vec3 up;// 传递一个文字对象osg::ref_ptr<osgText::Text> _updateText;
};// HUD
class CreateHUD
{
public:CreateHUD(){}~CreateHUD(){}// 创建HUDosg::ref_ptr<osg::Node> createHUD(osg::ref_ptr<osgText::Text> updateText){// 创建一个相机osg::ref_ptr<osg::Camera> hudCamera = new osg::Camera;// 设置绝对帧引用hudCamera->setReferenceFrame(osg::Transform::ABSOLUTE_RF);// 设置正投影矩阵2DhudCamera->setProjectionMatrixAsOrtho2D(0, 1280, 0, 1024);// 设置视图矩阵hudCamera->setViewMatrix(osg::Matrix::identity());// 设置渲染顺序为POSThudCamera->setRenderOrder(osg::Camera::POST_RENDER);// 清除深度缓存hudCamera->setClearMask(GL_DEPTH_BUFFER_BIT);// 设置字体string timesFont = "D:\\WorkAndStudy\\SDK\\VS2013\\OSG\\Data\\font\\cour.ttf";// 设置位置osg::Vec3 position(700, 900, 0.0);osg::ref_ptr<osg::Geode> geode = new osg::Geode();osg::ref_ptr<osg::StateSet> stateset = geode->getOrCreateStateSet();// 关闭光照stateset->setMode(GL_LIGHTING, osg::StateAttribute::OFF);//关闭深度测试stateset->setMode(GL_DEPTH_TEST, osg::StateAttribute::OFF);geode->addDrawable(updateText.get());hudCamera->addChild(geode.get());updateText->setCharacterSize(20.0f);updateText->setFont(timesFont);updateText->setColor(osg::Vec4(1.0f, 1.0, 1.0, 1.0));updateText->setText("");updateText->setPosition(position);// 设置数据变量为DYNAMICupdateText->setDataVariance(osg::Object::DYNAMIC);return hudCamera.get();}
};/* 显示位置及拾取示例 */
void pickLineSegment_8_10(const string &strDataFolder);/******************************************* 显示位置及拾取示例 *************************************/
// 事件处理函数
bool CPickHandler::handle(const osgGA::GUIEventAdapter &ea, osgGA::GUIActionAdapter &aa)
{switch (ea.getEventType()){// 每一帧case(osgGA::GUIEventAdapter::FRAME) :{osg::ref_ptr<osgViewer::Viewer> viewer = dynamic_cast<osgViewer::Viewer*>(&aa);// 得到视图矩阵viewer->getCamera()->getViewMatrixAsLookAt(position, center, up);if (viewer){// 执行PICK动作pick(viewer.get(), ea);}return false;}default:return false;}
}// PICK动作
void CPickHandler::pick(osg::ref_ptr<osgViewer::Viewer> viewer, const osgGA::GUIEventAdapter &ea)
{// 创建一个线段交集检测对象osgUtil::LineSegmentIntersector::Intersections intersections;std::string gdlist = "";// 申请一个流std::ostringstream os;// 得到鼠标的位置float x = ea.getX();float y = ea.getY();// 如果没有发生交集运算及鼠标没有点中物体if (viewer->computeIntersections(x, y, intersections)){// 得到相交交集的交点for (osgUtil::LineSegmentIntersector::Intersections::iterator hitr = intersections.begin(); hitr != intersections.end(); ++hitr){// 输入流os << "Mouse in World X:" << hitr->getWorldIntersectPoint().x() << "  Y:" << hitr->getWorldIntersectPoint().y() << "  Z:" << hitr->getWorldIntersectPoint().z() << endl;}}// 输入流os << "Viewer Position X:" << position[0] << " Y:" << position[1] << " Z:" << position[2] << endl;gdlist += os.str();// 设置显示内容setLabel(gdlist);
}void pickLineSegment_8_10(const string &strDataFolder)
{// 创建Viewer对象,场景浏览器osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer();osg::ref_ptr<osg::Group> root = new osg::Group();// 读取地形模型string strDataPath = strDataFolder + "lz.osg";osg::ref_ptr<osg::Node> node = osgDB::readNodeFile(strDataPath);osg::ref_ptr<osgText::Text> updateText = new osgText::Text();CreateHUD *hudText = new CreateHUD();// 添加到场景root->addChild(node);root->addChild(hudText->createHUD(updateText));// 添加PICK事件处理器viewer->addEventHandler(new CPickHandler(updateText));// 优化场景数据osgUtil::Optimizer optimizer;optimizer.optimize(root);viewer->setSceneData(root);viewer->realize();viewer->run();
}

        运行程序,截图如图 8-23 所示。

图8-23显示位置及拾取示例截图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/195671.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HWS-CTF-第七期山大站-inverse

文章目录 inversemainworkread_intread_n 思路onegadget exp 第一次真正意义上独立在比赛中做出题目来了&#xff0c;距离真正意义接触CTF-PWN差不多正好两个月。但由于不知道靶场要自己开而且端口每次自己打开会改&#xff0c;交flag稍微晚了些&#xff08;我太菜了&#xff0…

Linux之进程概念(一)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、冯诺依曼体系结构二、操作系统(Operator System)1、概念2、设计OS的目的3、定位4、如何理…

基于springboot实现摄影跟拍预定管理系统【项目源码+论文说明】

基于springboot实现摄影跟拍预定管理系统演示 摘要 首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了系统的需求基础上需要进一步地设计系统,主要…

算法之路(二)

&#x1f58a;作者 : D. Star. &#x1f4d8;专栏 : 算法小能手 &#x1f606;今日分享 : 你知道北极熊的皮肤是什么颜色的吗&#xff1f;&#xff08;文章结尾有答案哦&#xff01;&#xff09; 文章目录 力扣的209题✔解题思路✔代码:✔总结: 力扣的3题✔解题思路&#xff1a…

【STM32】IIC(Inter Integrated Cirruit--集成电路总线)

【单片机】14-I2C通信之EEPROM-CSDN博客 一、IIC总线协议介绍 1.IIC简介 同步&#xff08;有时钟频率&#xff09;&#xff0c;半双工&#xff08;同一个时间只能接收或者发送&#xff09;&#xff0c;串行&#xff08;一个字节一个字节传输&#xff09;&#xff0c;高位读取…

JUnit 单元自动化

一、Junit 是什么&#xff1f; Junit 是 Java 中用于单元测试的框架。使用 Junit 能让我们快速高效的完成单元测试。 自动化测试&#xff1a;JUnit提供了自动化测试的能力&#xff0c;开发人员可以编写一次测试用例&#xff0c;然后通过简单的命令或集成到持续集成工具中进行…

LDO线性稳压器要不要并联二极管?

昨天介绍过了LDO是什么东西&#xff0c;那么对于它的应用场景是怎么的呢&#xff1f;LDO要不要并联二极管呢&#xff1f; 一般来说&#xff0c;LDO是不需要并联二极管的。 看下图第一个是典型电路&#xff0c;第二个是带可调节电压功能的LDO典型电路&#xff0c;从图里就可以…

隐式转换导致索引失效的原因

Num1 int Num2 varchar Str1不能为null Str2可null 例子1&#xff1a; 结果&#xff1a;124非常快&#xff0c;0.001~0.005秒出结果。3最慢&#xff0c;4~5秒出结果。 查询执行计划&#xff1a;124索引扫描。3全表扫描。 解释&#xff1a;首先四个23都产生隐式转换&#x…

Kafka性能测试初探

相信大家对Kafka不会陌生&#xff0c;但首先还是要简单介绍一下。 Kafka是一种高性能的分布式消息系统&#xff0c;由LinkedIn公司开发&#xff0c;用于处理海量的实时数据流。它采用了发布/订阅模式&#xff0c;可以将数据流分发到多个消费者端&#xff0c;同时提供了高可靠性…

弗洛伊德算法(C++)

目录 介绍&#xff1a; 代码&#xff1a; 结果&#xff1a; 介绍&#xff1a; 弗洛伊德算法&#xff08;Floyd algorithm&#xff09;也称为Floyd-Warshall算法&#xff0c;是一种用于求解所有节点对之间的最短路径的动态规划算法。它使用了一个二维数组来存储所有节点…

defer和async

如果两个属性浏览器都不兼容&#xff0c;推荐把<script>标签放到底部 一般情况下&#xff0c;浏览器在解析html源文件时&#xff0c;如果遇到外部的<script>标签&#xff0c;解析过程就会先暂停&#xff0c;这时会对script进行加载&#xff0c;执行两个过程&…

深入解析具名导入es6规范中的具名导入是在做解构吗

先说答案&#xff0c;不是 尽管es6的具名导入和语法非常相似 es6赋值解构 const obj {a: 1,f() {this.a}}const { a, f } objes6具名导入 //导出文件代码export let a 1export function f() {a}export default {a,f}//导入文件代码import { a, f } from ./tsVolution可以看出…