010 OpenCV中的4种平滑滤波

目录

一、环境

二、平滑滤波

2.1、均值滤波

2.2、高斯滤波

2.3、中值滤波

2.4、双边滤波

三、完整代码


一、环境

本文使用环境为:

  • Windows10
  • Python 3.9.17
  • opencv-python 4.8.0.74

二、平滑滤波

2.1、均值滤波

在OpenCV库中,blur函数是一种简单而有效的图像平滑处理方法,也被称为均值滤波。该函数通过将图像中每个像素的值设置为其邻域中像素值的平均值,从而消除图像中的噪声。

函数原型如下:

cv2.blur(src, ksize[, dst[, anchor]])

参数解释:

  • src: 输入图像。它必须是8位或32位浮点型。
  • ksize: 这是均值滤波器的大小,它必须是奇数,并且可以有两种形式:例如 (5,5) 或 5. 在第二种情况下,滤波器将是正方形的,而在第一种情况下,滤波器将是矩形的。
  • dst: 输出图像。它的类型和源图像相同。
  • anchor: 锚点的位置。默认值是 (-1,-1),这表示锚点在滤波器的中心。

下面是一个简单的示例:

import cv2 
import numpy as np 
# 加载图像 
img = cv2.imread('image.jpg') 
# 应用blur函数 
blurred = cv2.blur(img, (5,5)) # 使用5x5的滤波器 
# 显示原图和处理后的图像 
cv2.imshow('Original Image', img) 
cv2.imshow('Blurred Image', blurred) 
cv2.waitKey(0) 
cv2.destroyAllWindows()

需要注意的是,虽然blur函数可以有效地消除噪声,但它也可能导致图像失去一些细节。因此,在使用此函数时,您可能需要考虑在消除噪声和保留细节之间取得平衡。

2.2、高斯滤波

GaussianBlur是OpenCV库中的一个函数,它用于对图像进行高斯模糊。高斯模糊是一种图像处理技术,通过对图像的每个像素应用一个高斯函数来达到模糊效果。这种方法在消除噪声和细节提取方面非常有效。

函数原型如下:

cv2.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]])

参数解释:

  • src: 输入图像。它必须是8位或32位浮点型。
  • ksize: 高斯核的大小。这个值必须是正整数,并且可以有两种形式:例如 (5,5) 或 5. 在第二种情况下,滤波器将是正方形的,而在第一种情况下,滤波器将是矩形的。
  • sigmaX: 表示高斯核函数在X方向的标准偏差。如果sigmaX是0,那么标准偏差将根据核大小ksize计算。
  • dst: 输出图像。它的类型和源图像相同。
  • sigmaY: 表示高斯核函数在Y方向的标准偏差。如果sigmaY是0,那么标准偏差将根据核大小ksize计算。
  • borderType: 像素外插法,默认值为cv2.BORDER_DEFAULT。

下面是一个简单的示例:

python
import cv2  
import numpy as np  # 加载图像  
img = cv2.imread('image.jpg')  # 应用GaussianBlur函数  
blurred = cv2.GaussianBlur(img, (5,5), 0) # 使用5x5的高斯滤波器,无sigmaY值,所以根据核大小计算标准偏差  # 显示原图和处理后的图像  
cv2.imshow('Original Image', img)  
cv2.imshow('Blurred Image', blurred)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

与blur函数相比,GaussianBlur可以提供更加柔和的模糊效果,因为它考虑了图像的更多频率内容。但是,这也会导致更多的细节丢失。因此,在使用此函数时,您可能需要考虑在消除噪声和保留细节之间取得平衡。

2.3、中值滤波

medianBlur函数是OpenCV库中的一个函数,用于对图像进行中值滤波处理,即使用中值滤波器来平滑图像。

函数原型如下:

cv2.medianBlur(src, ksize[, dst])
  • src: 输入图像,必须是8位或32位浮点型。
  • ksize: 滤波器的大小,必须是奇数,可以有两种形式:例如 (5,5) 或 5。当ksize为3或者5的时候,图像深度需为CV_8U,CV_16U,或CV_32F其中之一,而对于较大孔径尺寸的图片,它只能是CV_8U。
  • dst: 输出图像,类型和源图像相同。可以用Mat::Clone来初始化得到目标图。

medianBlur函数使用中值滤波器来平滑图像。对于多通道图片,每一个通道都单独进行处理,并且支持就地操作(In-place operation)。在边界类型(BorderTypes)方面,使用的是BORDER_REPLICATE。

2.4、双边滤波

双边滤波(Bilateral Filter)是一种非线性的滤波方法,结合了图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。

双边滤波器的好处是可以做边缘保存(edge preserving),一般用高斯滤波去降噪,会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。 但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

三、完整代码

import sys
import cv2 as cv
import numpy as np#  Global VariablesDELAY_CAPTION = 1500
DELAY_BLUR = 100
MAX_KERNEL_LENGTH = 31src = None
dst = None
window_name = 'Smoothing Demo'def main(argv):cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)# 读取图片imageName = argv[0] if len(argv) > 0 else 'data/lena.jpg'global srcsrc = cv.imread(cv.samples.findFile(imageName))if src is None:print ('Error opening image')return -1if display_caption('Original Image') != 0:return 0global dstdst = np.copy(src)if display_dst(DELAY_CAPTION) != 0:return 0# 均值滤波if display_caption('Homogeneous Blur') != 0:return 0for i in range(1, MAX_KERNEL_LENGTH, 2):dst = cv.blur(src, (i, i))if display_dst(DELAY_BLUR) != 0:return 0# 高斯滤波if display_caption('Gaussian Blur') != 0:return 0for i in range(1, MAX_KERNEL_LENGTH, 2):dst = cv.GaussianBlur(src, (i, i), 0)if display_dst(DELAY_BLUR) != 0:return 0# 中值滤波if display_caption('Median Blur') != 0:return 0for i in range(1, MAX_KERNEL_LENGTH, 2):dst = cv.medianBlur(src, i)if display_dst(DELAY_BLUR) != 0:return 0# 双边滤波if display_caption('Bilateral Blur') != 0:return 0# 双边滤波计算量相对大,所以当kernel半径很大的时候,就会较慢for i in range(1, MAX_KERNEL_LENGTH, 2):dst = cv.bilateralFilter(src, i, i * 2, i / 2)if display_dst(DELAY_BLUR) != 0:return 0display_caption('Done!')return 0# 显示黑色背景+文字
def display_caption(caption):global dstdst = np.zeros(src.shape, src.dtype)rows, cols, _ch = src.shapecv.putText(dst, caption, (int(cols / 4), int(rows / 2)), cv.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255))return display_dst(DELAY_CAPTION)# 显示效果图
def display_dst(delay):cv.imshow(window_name, dst)c = cv.waitKey(delay)if c >= 0 : return -1return 0if __name__ == "__main__":main(sys.argv[1:])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/213207.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SpringMVC】 三层架构

一.lombok工具包 中央仓库查找这个工具包:https://mvnrepository.com/ 给类添加Data注解就可以获取gettter和setter方法 , 这样我们就不必写getter 和 setter 方法. 也可以给成员属性添加单独的getter 和 setter , 针对某个成员属性单独添加setter或setter方法. 二.如果使用spr…

ET-Net:一种用于医学图像分割的通用边缘保持引导网络

ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation ET-Net:一种用于医学图像分割的通用边缘保持引导网络背景贡献实验方法Edge Guidance Module(边缘引导模块)Weighted Aggregation Module(加权…

物联网AI MicroPython学习之语法 I2S音频总线接口

学物联网,来万物简单IoT物联网!! I2S 介绍 模块功能: I2S音频总线驱动模块 接口说明 I2S - 构建I2S对象 函数原型:I2S(id, sck, ws, sd, mode, bits, format, rate, ibuf)参数说明: 参数类型必选参数&#xff1f…

设计山寨枚举

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 一个需求 在Employee类…

【c语言】重温一下动态内存,int数组过大会造成栈错误

项目场景: 项目场景:互助群同学在刷题的过程中,遇到的一个题目,需要申请一个很大数组,于是这个同学就写了int[1000000],其实这样写也没有错,可是运行后却显示栈错误。于是就找到我来请教,我想就…

Spark-06:共享变量

目录 1.广播变量(broadcast variables) 2.累加器(accumulators) 在分布式计算中,当在集群的多个节点上并行运行函数时,默认情况下,每个任务都会获得函数中使用到的变量的一个副本。如果变量很…

123. 股票买卖的最佳时机III(2次交易)

题目 题解 class Solution:def maxProfit(self, prices: List[int]) -> int:N len(prices)# 状态定义 dp[i][j][k]代表在第i天,被允许完成j次交易时,持有或者不持有的最大利润。k0代表不持有,k1代表持有dp [[[0 for k in range(2)] for…

分布式锁之基于mysql实现分布式锁(四)

不管是jvm锁还是mysql锁,为了保证线程的并发安全,都提供了悲观独占排他锁。所以独占排他也是分布式锁的基本要求。 可以利用唯一键索引不能重复插入的特点实现。设计表如下: CREATE TABLE tb_lock (id bigint(20) NOT NULL AUTO_INCREMENT,…

数据防泄漏系统有什么作用及优势?

数据防泄漏系统(Data Loss Prevention,简称DLP)是一种重要的信息安全解决方案,旨在防止敏感数据被未经授权地泄露、滥用或盗窃。它在保护企业、政府机构和个人的隐私和机密信息方面发挥着关键作用。以下是数据防泄漏系统的作用及优势: 作用&a…

STM32:基本定时器原理和定时程序

一、初识定时器TIM 定时器就是计数器,定时器的作用就是设置一个时间,然后时间到后就会通过中断等方式通知STM32执行某些程序。定时器除了可以实现普通的定时功能,还可以实现捕获脉冲宽度,计算PWM占空比,输出PWM波形&am…

【开源】基于Vue.js的固始鹅块销售系统

项目编号: S 060 ,文末获取源码。 \color{red}{项目编号:S060,文末获取源码。} 项目编号:S060,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 鹅块类型模块2.3 固…

YOLOv5 分类模型 预处理 OpenCV实现

YOLOv5 分类模型 预处理 OpenCV实现 flyfish YOLOv5 分类模型 预处理 PIL 实现 YOLOv5 分类模型 OpenCV和PIL两者实现预处理的差异 YOLOv5 分类模型 数据集加载 1 样本处理 YOLOv5 分类模型 数据集加载 2 切片处理 YOLOv5 分类模型 数据集加载 3 自定义类别 YOLOv5 分类模型…