YOLOv8 onnx 文件推理多线程加速视频流

运行环境:

  • MacOS:14.0
  • Python 3.9
  • Pytorch2.1
  • onnx 运行时

模型文件:

https://wwxd.lanzouu.com/iBqiA1g49pbc
密码:f40v

  • 下载 best.apk后将后缀名修改为 onnx 即可
  • 模型在英伟达 T4GPU 使用 coco128 训练了 200 轮
  • 如遇下载不了可私信获取

代码:

import copy
import timeimport onnxruntime as rt
import numpy as np
import cv2
import concurrent.futures# 前处理
def resize_image(image, size, letterbox_image):"""对输入图像进行resizeArgs:size:目标尺寸letterbox_image: bool 是否进行letterbox变换Returns:指定尺寸的图像"""ih, iw, _ = image.shapeh, w = size# letterbox_image = Falseif letterbox_image:scale = min(w / iw, h / ih)nw = int(iw * scale)nh = int(ih * scale)image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_LINEAR)image_back = np.ones((h, w, 3), dtype=np.uint8) * 128image_back[(h - nh) // 2: (h - nh) // 2 + nh, (w - nw) // 2:(w - nw) // 2 + nw, :] = imageelse:image_back = imagereturn image_backdef img2input(img):img = np.transpose(img, (2, 0, 1))img = img / 255return np.expand_dims(img, axis=0).astype(np.float32)def std_output(pred):"""将(1,84,8400)处理成(8400, 85)  85= box:4  conf:1 cls:80"""pred = np.squeeze(pred)pred = np.transpose(pred, (1, 0))pred_class = pred[..., 4:]pred_conf = np.max(pred_class, axis=-1)pred = np.insert(pred, 4, pred_conf, axis=-1)return preddef xywh2xyxy(*box):"""将xywh转换为左上角点和左下角点Args:box:Returns: x1y1x2y2"""ret = [box[0] - box[2] // 2, box[1] - box[3] // 2, \box[0] + box[2] // 2, box[1] + box[3] // 2]return retdef get_inter(box1, box2):"""计算相交部分面积Args:box1: 第一个框box2: 第二个狂Returns: 相交部分的面积"""x1, y1, x2, y2 = xywh2xyxy(*box1)x3, y3, x4, y4 = xywh2xyxy(*box2)# 验证是否存在交集if x1 >= x4 or x2 <= x3:return 0if y1 >= y4 or y2 <= y3:return 0# 将x1,x2,x3,x4排序,因为已经验证了两个框相交,所以x3-x2就是交集的宽x_list = sorted([x1, x2, x3, x4])x_inter = x_list[2] - x_list[1]# 将y1,y2,y3,y4排序,因为已经验证了两个框相交,所以y3-y2就是交集的宽y_list = sorted([y1, y2, y3, y4])y_inter = y_list[2] - y_list[1]# 计算交集的面积inter = x_inter * y_interreturn interdef get_iou(box1, box2):"""计算交并比: (A n B)/(A + B - A n B)Args:box1: 第一个框box2: 第二个框Returns:  # 返回交并比的值"""box1_area = box1[2] * box1[3]  # 计算第一个框的面积box2_area = box2[2] * box2[3]  # 计算第二个框的面积inter_area = get_inter(box1, box2)union = box1_area + box2_area - inter_area  # (A n B)/(A + B - A n B)iou = inter_area / unionreturn ioudef nms(pred, conf_thres, iou_thres):"""非极大值抑制nmsArgs:pred: 模型输出特征图conf_thres: 置信度阈值iou_thres: iou阈值Returns: 输出后的结果"""box = pred[pred[..., 4] > conf_thres]  # 置信度筛选cls_conf = box[..., 5:]cls = []for i in range(len(cls_conf)):cls.append(int(np.argmax(cls_conf[i])))total_cls = list(set(cls))  # 记录图像内共出现几种物体output_box = []# 每个预测类别分开考虑for i in range(len(total_cls)):clss = total_cls[i]cls_box = []temp = box[:, :6]for j in range(len(cls)):# 记录[x,y,w,h,conf(最大类别概率),class]值if cls[j] == clss:temp[j][5] = clsscls_box.append(temp[j][:6])#  cls_box 里面是[x,y,w,h,conf(最大类别概率),class]cls_box = np.array(cls_box)sort_cls_box = sorted(cls_box, key=lambda x: -x[4])  # 将cls_box按置信度从大到小排序# box_conf_sort = np.argsort(-box_conf)# 得到置信度最大的预测框max_conf_box = sort_cls_box[0]output_box.append(max_conf_box)sort_cls_box = np.delete(sort_cls_box, 0, 0)# 对除max_conf_box外其他的框进行非极大值抑制while len(sort_cls_box) > 0:# 得到当前最大的框max_conf_box = output_box[-1]del_index = []for j in range(len(sort_cls_box)):current_box = sort_cls_box[j]iou = get_iou(max_conf_box, current_box)if iou > iou_thres:# 筛选出与当前最大框Iou大于阈值的框的索引del_index.append(j)# 删除这些索引sort_cls_box = np.delete(sort_cls_box, del_index, 0)if len(sort_cls_box) > 0:# 我认为这里需要将clas_box先按置信度排序, 才能每次取第一个output_box.append(sort_cls_box[0])sort_cls_box = np.delete(sort_cls_box, 0, 0)return output_boxdef cod_trf(result, pre, after):"""因为预测框是在经过letterbox后的图像上做预测所以需要将预测框的坐标映射回原图像上Args:result:  [x,y,w,h,conf(最大类别概率),class]pre:    原尺寸图像after:  经过letterbox处理后的图像Returns: 坐标变换后的结果,"""res = np.array(result)x, y, w, h, conf, cls = res.transpose((1, 0))x1, y1, x2, y2 = xywh2xyxy(x, y, w, h)  # 左上角点和右下角的点h_pre, w_pre, _ = pre.shapeh_after, w_after, _ = after.shapescale = max(w_pre / w_after, h_pre / h_after)  # 缩放比例h_pre, w_pre = h_pre / scale, w_pre / scale  # 计算原图在等比例缩放后的尺寸x_move, y_move = abs(w_pre - w_after) // 2, abs(h_pre - h_after) // 2  # 计算平移的量ret_x1, ret_x2 = (x1 - x_move) * scale, (x2 - x_move) * scaleret_y1, ret_y2 = (y1 - y_move) * scale, (y2 - y_move) * scaleret = np.array([ret_x1, ret_y1, ret_x2, ret_y2, conf, cls]).transpose((1, 0))return retdef draw(res, image, cls):"""将预测框绘制在image上Args:res: 预测框数据image: 原图cls: 类别列表,类似["apple", "banana", "people"]  可以自己设计或者通过数据集的yaml文件获取Returns:"""for r in res:# 画框image = cv2.rectangle(image, (int(r[0]), int(r[1])), (int(r[2]), int(r[3])), (255, 0, 0), 1)# 表明类别text = "{}:{}".format(cls[int(r[5])], round(float(r[4]), 2))h, w = int(r[3]) - int(r[1]), int(r[2]) - int(r[0])  # 计算预测框的长宽font_size = min(h / 640, w / 640) * 3  # 计算字体大小(随框大小调整)image = cv2.putText(image, text, (max(10, int(r[0])), max(20, int(r[1]))), cv2.FONT_HERSHEY_COMPLEX,max(font_size, 0.3), (0, 0, 255), 1)  # max()为了确保字体不过界return imagedef display_fps(frame, start_time):global global_fpsend_time = time.time()elapsed_time = end_time - start_timeglobal_fps = 1 / elapsed_time# 在图像上显示帧率cv2.putText(frame, f"FPS: {global_fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)global_fps = 0.0if __name__ == '__main__':cap = cv2.VideoCapture(0)sess = rt.InferenceSession('./best.onnx')cv2.namedWindow('Video Stream', cv2.WINDOW_NORMAL)names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard','cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors','teddy bear', 'hair drier', 'toothbrush']def inference_task(frame):class_list = list(names)std_h, std_w = 640, 640img_after = resize_image(frame, (std_w, std_h), True)data = img2input(img_after)input_name = sess.get_inputs()[0].namelabel_name = sess.get_outputs()[0].namepred = sess.run([label_name], {input_name: data})[0]pred = std_output(pred)result = nms(pred, 0.6, 0.4)result = cod_trf(result, frame, img_after)image = draw(result, frame, class_list)return imagewith concurrent.futures.ThreadPoolExecutor(max_workers=20) as executor:while True:start_time = time.time()# 读取一帧ret, frame = cap.read()if not ret:print("无法读取帧")break# 提交任务并获取 Future 对象future = executor.submit(inference_task, frame)display_fps(frame, start_time)# 获取结果try:image = future.result()# 显示窗口cv2.imshow('Video Stream', image)cv2.waitKey(1)except Exception as e:cv2.imshow('Video Stream', frame)cv2.waitKey(1)# 释放资源cap.release()cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/225594.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Flutter】graphic图表实现自定义tooltip

renderer graphic中tooltip的TooltipGuide类提供了renderer方法,接收三个参数Size类型,Offset类型,Map<int, Tuple>类型。可查到的文档是真的少,所以只能在源码中扒拉例子,做符合需求的修改。 官方github示例 官方示例 这个例子感觉像是tooltip和提供的那些属性的…

springboot自定义更换启动banner动画

springboot自定义更换启动banner动画 文章目录 springboot自定义更换启动banner动画 &#x1f4d5;1.新建banner&#x1f5a5;️2.启动项目&#x1f516;3.自动生成工具&#x1f9e3;4.彩蛋 &#x1f58a;️最后总结 &#x1f4d5;1.新建banner 在resources中新建banner.txt文…

【机器视觉技术】:开创崭新时代

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; IT杂谈 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1; 前言&#x1f324;️ 机器视觉技术的实现☁️ 图像采集☁️ 图像处理☁️ 数据建模☁️应用展示…

计算机毕业设计springboot+vue高校田径运动会报名管理系统61s38

高校田径运动会管理采用java技术&#xff0c;基于springboot框架&#xff0c;mysql数据库进行开发&#xff0c;实现了首页、个人中心、运动员管理、裁判员管理、场地信息管理、项目类型管理、比赛项目管理、比赛报名管理、比赛成绩管理、通知公告管理、留言板管理、交流论坛、系…

全能音乐制作环境——水果编曲软件FL Studio 21.1版本下载安装配置

目录 前言一、FL Studio 安装二、使用配置总结 前言 FL Studio是一款流行的图像线软件制作和编辑音频文件。作为一款领先的创新产品&#xff0c;该软件能够满足在创作音乐方面的需求。有了这个产品&#xff0c;可以完成制作音乐的整个过程。可以使用这个软件进行写作&#xff…

VIR-SLAM代码分析2——VIR_VINS详解

前言 VIR-SLAM中VIR_VINS文件夹下是基于VINS-mono的结合UWB传感器的估计器&#xff0c;主要改动的文件在uwb_posegraph&#xff0c;vir_estimator中。其他文件夹完成的是UWB数据的处理问题&#xff0c;比较简单上一节介绍足够&#xff0c;代码也容易看懂。本节介绍的VIR_VINS是…

校园圈子小程序APPH5,三端源码交付,支持二开,交友,外卖,跑腿等功能应有尽有

校园圈子程序&#xff0c;是集合了各种好玩儿的东西在里面的一款小程序&#xff0c;APP&#xff0c;H5三端一体的系统&#xff0c;可以帮助大家能更好的去体验生活的快乐 校园后端下载地址&#xff1a;校园圈子系统小程序&#xff0c;校园拼车&#xff0c;校园表白&#xff0c;…

SpringCloud之服务网关Gateway组件使用——详解

目录 一、网关介绍 1.什么是服务网关 2. 为什么需要网关 3.网关组件在微服务中架构 二、服务网关组件 1. zuul 1.x 2.x(netflix 组件) 1.1 zuul版本说明 2. gateway (spring) 2.1 特性 2.2 开发网关动态路由 2.2.1.创建项目引入网关依赖 2.2.2 快捷方式配置路由 2.2…

Python爬虫入门:如何设置代理IP进行网络爬取

目录 前言 一、获取代理IP 1.1 获取免费代理IP 1.2 验证代理IP 二、设置代理IP 三、使用代理IP进行网络爬取 四、总结 前言 在进行网络爬取时&#xff0c;经常会遇到一些反爬虫的措施&#xff0c;比如IP封锁、限制访问频率等。为了解决这些问题&#xff0c;我们可以使用…

day66

今日回顾内容 web框架 django 路由控制 视图层 web框架 一、什么是web框架 Web框架&#xff08;Web framework&#xff09;是一种开发框架&#xff0c;用来支持动态网站、网络应用和网络服务的开发。这大多数的web框架提供了一套开发和部署网站的方式&#xff0c;也为web行…

人机交互2——任务型多轮对话的控制和生成

1.自然语言理解模块 2.对话管理模块 3.自然语言生成模块

LFM信号分析

LFM信号 在时域中&#xff0c;理想线性调频信号持续时间为 T T T 秒&#xff0c;振幅为一常量&#xff0c;中心频率为 f c e n t e r f_{center} fcenter​ &#xff0c;相位 θ ( t ) \theta(t) θ(t) 随时间按一定规律变化。当 f c e n t e r f_{center} fcenter​ 为0时…