吴恩达机器学习2022-Jupyter-机器学习实例

1 可选实验: 特征工程和多项式回归

1.1 目标

在这个实验室里:

  • 探索特征工程和多项式回归,它可以让你使用线性回归机制来适应非常复杂,甚至非常非线性的函数。

1.2 工具

您将利用在以前的实验中开发的函数以及matplotlib和NumPy。

2 特征工程与多项式回归综述

线性回归提供了一种模型方法,公式形式为:

如果您的特性/数据是非线性的或者是特性的组合,该怎么办?例如,住房价格往往不与居住面积成线性关系,而是对小型或大型房屋造成上图所示曲线的惩罚。我们如何利用线性回归机制来适应这条曲线?回想一下,我们所拥有的“机制”是能够修改(1)中的参数 w,b,使方程“适合”训练数据。然而,(1)中 w,b 的任何调整都不会实现对非线性曲线的拟合。

2.1 多项式特征

上面我们考虑了一个数据是非线性的场景。让我们试着用我们目前所知道的来拟合一条非线性曲线。我们从一个简单的二次型开始: y = 1 + x^2。

# create target data
x = np.arange(0, 20, 1)
y = 1 + x**2
X = x.reshape(-1, 1)model_w,model_b = run_gradient_descent_feng(X,y,iterations=1000, alpha = 1e-2)plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("no feature engineering")
plt.plot(x,X@model_w + model_b, label="Predicted Value");  plt.xlabel("X"); plt.ylabel("y"); plt.legend(); plt.show()

输出:

Iteration         0, Cost: 1.65756e+03
Iteration       100, Cost: 6.94549e+02
Iteration       200, Cost: 5.88475e+02
Iteration       300, Cost: 5.26414e+02
Iteration       400, Cost: 4.90103e+02
Iteration       500, Cost: 4.68858e+02
Iteration       600, Cost: 4.56428e+02
Iteration       700, Cost: 4.49155e+02
Iteration       800, Cost: 4.44900e+02
Iteration       900, Cost: 4.42411e+02
w,b found by gradient descent: w: [18.7], b: -52.0834

 不出所料,不太合适。我们需要的是类似 y = w0x0^2 + b 或者多项式特征的东西。为此,您可以修改输入数据来设计所需的特性。如果将原始数据与平方 x 值的版本交换,则可以实现 y = w0·x0^2 + b。以 X * * 2交换 X 如下:

# create target data
x = np.arange(0, 20, 1)
y = 1 + x**2# Engineer features 
X = x**2      #<-- added engineered featureX = X.reshape(-1, 1)  #X should be a 2-D Matrix
model_w,model_b = run_gradient_descent_feng(X, y, iterations=10000, alpha = 1e-5)plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Added x**2 feature")
plt.plot(x, np.dot(X,model_w) + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel("y"); plt.legend(); plt.show()

输出:

Iteration         0, Cost: 7.32922e+03
Iteration      1000, Cost: 2.24844e-01
Iteration      2000, Cost: 2.22795e-01
Iteration      3000, Cost: 2.20764e-01
Iteration      4000, Cost: 2.18752e-01
Iteration      5000, Cost: 2.16758e-01
Iteration      6000, Cost: 2.14782e-01
Iteration      7000, Cost: 2.12824e-01
Iteration      8000, Cost: 2.10884e-01
Iteration      9000, Cost: 2.08962e-01
w,b found by gradient descent: w: [1.], b: 0.0490

太好了!近乎完美。注意打印出来的 w 和 b 的值就在图表 w,b 的梯度下降法 w: [1. ]的右上方,b: 0.0490.梯度下降法修改了 w,b 的初始值为(1.0.0.049) ,或者 y = 1的模型为 * x20.0.049,非常接近我们的目标 y = 1 * x20 + 1。如果你运行的时间更长,可能会更匹配。

2.1.1 选择特征

上面,我们知道需要一个 x^2项。需要那些特征可能并不总是显而易见的。人们可以添加各种潜在的特性,以试图找到最有用的特性。例如,如果我们尝试: y = w0x0 + w1x1^2 + w2x3^2 + b。

# create target data
x = np.arange(0, 20, 1)
y = x**2# engineer features .
X = np.c_[x, x**2, x**3]   #<-- added engineered featuremodel_w,model_b = run_gradient_descent_feng(X, y, iterations=10000, alpha=1e-7)plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("x, x**2, x**3 features")
plt.plot(x, X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel("y"); plt.legend(); plt.show()

输出:

Iteration         0, Cost: 1.14029e+03
Iteration      1000, Cost: 3.28539e+02
Iteration      2000, Cost: 2.80443e+02
Iteration      3000, Cost: 2.39389e+02
Iteration      4000, Cost: 2.04344e+02
Iteration      5000, Cost: 1.74430e+02
Iteration      6000, Cost: 1.48896e+02
Iteration      7000, Cost: 1.27100e+02
Iteration      8000, Cost: 1.08495e+02
Iteration      9000, Cost: 9.26132e+01
w,b found by gradient descent: w: [0.08 0.54 0.03], b: 0.0106

注意 w,[0.080.540.03]和 b 的值是0.0106。这意味着拟合/训练后的模型是: 

0.08𝑥+0.54𝑥^2+0.03𝑥^3+0.0106。

梯度下降法强调了最适合 x^2数据的数据,即相对于其他数据增加 w1项。如果你要跑很长一段时间,它会继续减少其他术语的影响。梯度下降法是通过强调其相关参数来为我们选择“正确”的特征.

让我们回顾一下这个想法:

最初,这些特征被重新缩放,因此它们可以彼此比较

较小的权重值意味着较不重要/正确的特征,在极端情况下,当权重变为零或非常接近零时,相关的特征可用于将模型拟合到数据中。

以上,经过拟合,权值相关的 x^2特征要比 x 或 x^3的权重大得多,因为它在拟合数据时最有用。

2.1.2 另一种视角

根据目标数据的匹配程度选择多项式特征。另一种思考这个问题的方法是注意,一旦我们创建了新的特性,我们仍然在使用线性回归。考虑到这一点,最好的特征将是线性相对于目标。最好通过一个例子来理解这一点。

# create target data
x = np.arange(0, 20, 1)
y = x**2# engineer features .
X = np.c_[x, x**2, x**3]   #<-- added engineered feature
X_features = ['x','x^2','x^3']fig,ax=plt.subplots(1, 3, figsize=(12, 3), sharey=True)
for i in range(len(ax)):ax[i].scatter(X[:,i],y)ax[i].set_xlabel(X_features[i])
ax[0].set_ylabel("y")
plt.show()

输出:

上面,很明显,x^2映射到目标值 y 的特征是线性的,线性回归可以很容易地使用该特征生成一个模型。

# create target data
x = np.arange(0,20,1)
X = np.c_[x, x**2, x**3]
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X,axis=0)}")# add mean_normalization 
X = zscore_normalize_features(X)     
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X,axis=0)}")

输出:

Peak to Peak range by column in Raw        X:[  19  361 6859]
Peak to Peak range by column in Normalized X:[3.3  3.18 3.28]

现在,我们可以用更大的 alpha 值再试一次:

x = np.arange(0,20,1)
y = x**2X = np.c_[x, x**2, x**3]
X = zscore_normalize_features(X) model_w, model_b = run_gradient_descent_feng(X, y, iterations=100000, alpha=1e-1)plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 feature")
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel("y"); plt.legend(); plt.show()

输出:

Iteration         0, Cost: 9.42147e+03
Iteration     10000, Cost: 3.90938e-01
Iteration     20000, Cost: 2.78389e-02
Iteration     30000, Cost: 1.98242e-03
Iteration     40000, Cost: 1.41169e-04
Iteration     50000, Cost: 1.00527e-05
Iteration     60000, Cost: 7.15855e-07
Iteration     70000, Cost: 5.09763e-08
Iteration     80000, Cost: 3.63004e-09
Iteration     90000, Cost: 2.58497e-10
w,b found by gradient descent: w: [5.27e-05 1.13e+02 8.43e-05], b: 123.5000

特性缩放使它更快地收敛。

再次注意 w 的值。W1项,也就是 x^2项是最重要的。梯度下降法几乎完全取消了 x^3这个术语。

 2.1.4 复杂函数

通过特征工程,即使是相当复杂的功能也可以被建模:

x = np.arange(0,20,1)
y = np.cos(x/2)X = np.c_[x, x**2, x**3,x**4, x**5, x**6, x**7, x**8, x**9, x**10, x**11, x**12, x**13]
X = zscore_normalize_features(X) model_w,model_b = run_gradient_descent_feng(X, y, iterations=1000000, alpha = 1e-1)plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 feature")
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel("y"); plt.legend(); plt.show()

输出:

Iteration         0, Cost: 2.24887e-01
Iteration    100000, Cost: 2.31061e-02
Iteration    200000, Cost: 1.83619e-02
Iteration    300000, Cost: 1.47950e-02
Iteration    400000, Cost: 1.21114e-02
Iteration    500000, Cost: 1.00914e-02
Iteration    600000, Cost: 8.57025e-03
Iteration    700000, Cost: 7.42385e-03
Iteration    800000, Cost: 6.55908e-03
Iteration    900000, Cost: 5.90594e-03
w,b found by gradient descent: w: [-1.61e+00 -1.01e+01  3.00e+01 -6.92e-01 -2.37e+01 -1.51e+01  2.09e+01-2.29e-03 -4.69e-03  5.51e-02  1.07e-01 -2.53e-02  6.49e-02], b: -0.0073

3 总结

在这个实验室里:

  • 学习了线性回归如何使用特征工程来建模复杂的,甚至是高度非线性的函数
  • 认识到在进行特征工程时应用特征缩放的重要性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/23159.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Gradio库进行交互式数据可视化:Timeseries模块介绍

❤️觉得内容不错的话&#xff0c;欢迎点赞收藏加关注&#x1f60a;&#x1f60a;&#x1f60a;&#xff0c;后续会继续输入更多优质内容❤️ &#x1f449;有问题欢迎大家加关注私戳或者评论&#xff08;包括但不限于NLP算法相关&#xff0c;linux学习相关&#xff0c;读研读博…

【Hippo4j监控Web容器Tomcat线程池】

&#x1f680; 线程池管理工具-Hippo4j &#x1f680; &#x1f332; AI工具、AI绘图、AI专栏 &#x1f340; &#x1f332; 如果你想学到最前沿、最火爆的技术&#xff0c;赶快加入吧✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;CSDN-Java领域优质创作者&#…

traceId跟踪请求全流程日志

一个系统被拆分成N多个模块&#xff0c;这些模块负责不同的功能&#xff0c;组合成一套系统&#xff0c;最终可以提供丰富的功能。在这种分布式架构中&#xff0c;一次请求往往需要涉及到多个服务&#xff0c;如下图&#xff1a; 服务之间的调用错综复杂&#xff0c;对于维护的…

JVM系列(6)——类加载器详解双亲委派

一、类加载器 类加载器是一个负责加载类的对象&#xff0c;用于实现类加载过程中的加载这一步。 主要作用就是加载 Java 类的字节码&#xff08; .class 文件&#xff09;到 JVM 中&#xff08;在内存中生成一个代表该类的 Class 对象&#xff09;。 加载过程可以看 JVM系列&a…

《面试1v1》Kafka基础

&#x1f345; 作者简介&#xff1a;王哥&#xff0c;CSDN2022博客总榜Top100&#x1f3c6;、博客专家&#x1f4aa; &#x1f345; 技术交流&#xff1a;定期更新Java硬核干货&#xff0c;不定期送书活动 &#x1f345; 王哥多年工作总结&#xff1a;Java学习路线总结&#xf…

RabbitMQ之交换机

RabbitMQ之交换机 1. Exchanges1.1 Exchanges 概念1.2 Exchanges 的类型1.3 无名 exchange 2. 临时队列3. 绑定&#xff08;bindings&#xff09;4. Fanout4.1 Fanout 介绍4.2 Fanout 实战 5. Direct exchange5.1 Direct exchange 介绍5.2 多重绑定5.3 实战 6. Topics6.1 之前类…

Python(十二)常见的数据类型

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

走进分布式系统(分布式系统简介)

走进分布式系统 分布式系统简介分布式系统的架构演变过程初创期发展期成熟期 分布式系统的特性什么是分布式系统特性 分布式系统带来的问题 分布式中间件简介什么是分布式中间件常用的分布式中间件 分布式系统简介 分布式系统的架构演变过程 讲在前面&#xff0c;首先我们要了…

耳夹式骨传导耳机有哪些比较好用?这三个款式不容错过!

骨传导耳机由于不入耳&#xff0c;不用担心耳道健康问题&#xff0c;越来越受到广大网友的喜欢&#xff0c;而传统的入耳式耳机&#xff0c;则因为长时间佩戴会耳朵痛&#xff0c;容易掉落等问题逐渐的被网友抛弃&#xff0c;那么在骨传导耳机市场种类这么多的情况下&#xff0…

X6 基于VUE流程编辑器开发

先看效果图 主要插件X6 x6-vue-shape antv/x6-plugin-dnd 代码太多没有整理出来

100天精通Golang(基础入门篇)——第16天:深入解析Go语言包的使用和包管理

&#x1f337; 博主 libin9iOak带您 Go to Golang Language.✨ &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &#x1f30a; 《I…

【ArcGIS微课1000例】0070:制作宾馆酒店分布热度热力图

本文讲解在ArcGIS中,基于长沙市酒店宾馆分布矢量点数据(POI数据)绘制酒店分布热力图。 相关阅读: 【GeoDa实用技巧100例】004:绘制长沙市宾馆热度图 【ArcGIS Pro微课1000例】0028:绘制酒店分布热力图(POI数据) 文章目录 一、加载宾馆分布数据二、绘制热度图一、加载宾…