什么是CAS
CAS(Compare-and-Swap)是一种乐观锁的实现方式,全称为“比较并交换”,是一种无锁的原子操作。
在并发编程中,我们都知道
i++
操作是非线程安全的,这是因为i++
操作不是原子操作
i++语句只需要执行一条指令
但当有多个线程时,并不能保证多个线程i++,操作同一个i。因为还有寄存器的因素,多个cpu对应多个寄存器。
每次要先把i从内存复制到寄存器,然后++,然后再把i复制到内存中,这需要至少3步。
悲观锁
对于悲观锁来说,它总是认为每次访问共享资源时会发生冲突,所以必须对每次数据操作加上锁,以保证临界区的程序同一时间只能有一个线程在执行。
乐观锁
乐观锁,顾名思义,它是乐观派。乐观锁总是假设对共享资源的访问没有冲突,线程可以不停地执行,无需加锁也无需等待。一旦多个线程发生冲突,乐观锁通常使用一种称为 CAS 的技术来保证线程执行的安全性。
由于乐观锁假想操作中没有锁的存在,因此不太可能出现死锁的情况,换句话说,乐观锁天生免疫死锁。
如何保证原子性
常见的做法就是加锁。
在 Java 中,我们可以使用 synchronized关键字 和
CAS
(Compare-and-Swap)来实现加锁效果。
synchronized
是悲观锁,尽管随着 JDK 版本的升级,synchronized 关键字已经“轻量级”了很多,但依然是悲观锁,线程开始执行第一步就要获取锁,一旦获得锁,其他的线程进入后就会阻塞并等待锁。
CAS
是乐观锁,线程执行的时候不会加锁,它会假设此时没有冲突,然后完成某项操作;如果因为冲突失败了就重试,直到成功为止。CAS 虽好,但也有一些问题,比如说 ABA 问题、循环时间长开销大、只能保证一个共享变量的原子操作等。在开发中,我们要根据实际情况来选择使用 CAS 还是使用锁。
什么是 CAS
在 CAS 中,有这样三个值:
- V:要更新的变量(var)
- E:预期值(expected)
- N:新值(new)
比较并交换的过程如下:
判断 V 是否等于 E,如果等于,将 V 的值设置为 N;如果不等,说明已经有其它线程更新了 V,于是当前线程放弃更新,什么都不做。这里的预期值 E 本质上指的是“旧值”。
我们以一个简单的例子来解释这个过程:
- 如果有一个多个线程共享的变量
i
原本等于 5,我现在在线程 A 中,想把它设置为新的值 6;- 我们使用 CAS 来做这个事情;
- 首先我们用 i 去与 5 对比,发现它等于 5,说明没有被其它线程改过,那我就把它设置为新的值 6,此次 CAS 成功,
i
的值被设置成了 6;- 如果不等于 5,说明
i
被其它线程改过了(比如现在i
的值为 2),那么我就什么也不做,此次 CAS 失败,i
的值仍然为 2。在这个例子中,
i
就是 V,5 就是 E,6 就是 N。
那有没有可能我在判断了
i
为 5 之后,正准备更新它的新值的时候,被其它线程更改了i
的值呢?不会的。因为 CAS 是一种原子操作,它是一种系统原语,是一条 CPU 的原子指令,从 CPU 层面已经保证它的原子性。
当多个线程同时使用 CAS 操作一个变量时,只有一个会胜出,并成功更新,其余均会失败,但失败的线程并不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。
CAS 的原理
前面提到,CAS 是一种原子操作。那么 Java 是怎样来使用 CAS 的呢?我们知道,在 Java 中,如果一个方法是 native 的,那 Java 就不负责具体实现它,而是交给底层的 JVM 使用 C 语言 或者 C++ 去实现。
在 Java 中,有一个Unsafe
类,它在sun.misc
包中。它里面都是一些native
方法,其中就有几个是关于 CAS 的:
boolean compareAndSwapObject(Object o, long offset,Object expected, Object x);
boolean compareAndSwapInt(Object o, long offset,int expected,int x);
boolean compareAndSwapLong(Object o, long offset,long expected,long x);
Unsafe 对 CAS 的实现是通过 C++ 实现的,它的具体实现和操作系统、CPU 都有关系。
Linux 的 X86 下主要是通过cmpxchgl
这个指令在 CPU 上完成 CAS 操作的,但在多处理器情况下,必须使用lock
指令加锁来完成。当然,不同的操作系统和处理器在实现方式上肯定会有所不同。
除了上面提到的方法,Unsafe 里面还有其它的方法。比如支持线程挂起和恢复的park
和unpark
方法, LockSupport 类
底层就调用了这两个方法。还有支持反射操作的allocateInstance()
方法。
CAS 如何实现原子操作
上面介绍了 Unsafe 类的几个支持 CAS 的方法。那 Java 具体是如何通过这几个方法来实现原子操作的呢?
JDK 提供了一些用于原子操作的类,在java.util.concurrent.atomic
包下面。在 JDK 8 中,有以下这些类:
从名字就可以看出来这些类大概的用途
- 原子更新基本类型
- 原子更新数组
- 原子更新引用
- 原子更新字段(属性)
这里我们以AtomicInteger
类的getAndAdd(int delta)
方法为例,来看看 Java 是如何实现原子操作的。
先来看 getAndAdd 方法的源码:
public final int getAndAdd(int delta) {return unsafe.getAndAddInt(this, valueOffset, delta);
}
这里的 unsafe 其实就是一个Unsafe
对象:
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
所以,AtomicInteger
类的getAndAdd()
方法是通过调用Unsafe
类的方法实现的:
public final int getAndAddInt(Object var1, long var2, int var4) {int var5;do {var5 = this.getIntVolatile(var1, var2);} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));return var5;
}
让我们详细分析下这段代码,先看参数:
- Object var1,这个参数代表你想要进行操作的对象。
- long var2,这个参数是你想要操作的 var1 对象中的某个字段的偏移量。这个偏移量可以通过 Unsafe 类的 objectFieldOffset 方法获得。
- int var4,这个参数是你想要增加的值。
再来看方法执行的过程:
- 首先,在 do while 循环开始,通过
this.getIntVolatile(var1, var2)
获取当前对象指定字段的值,将其存入临时变量 var5 中。这里的 getIntVolatile 方法能保证读操作的可见性,即读取的结果是最新的写入结果,不会因为 JVM 的优化策略(如指令重排序
)或者 CPU 的缓存导致读取到过期的数据。- 然后,执行
compareAndSwapInt(var1, var2, var5, var5 + var4)
进行 CAS 操作。如果对象 var1 在内存地址 var2 处的值等于预期值 var5,则将该位置的值更新为 var5 + var4,并返回 true;否则,不做任何操作并返回 false。- 如果 CAS 操作成功,说明我们成功地将 var1 对象的 var2 偏移量处的字段的值更新为 var5 + var4,并且这个更新操作是原子性的,因此我们跳出循环并返回原来的值 var5。
- 如果 CAS 操作失败,说明在我们尝试更新值的时候,有其他线程修改了该字段的值,所以我们继续循环,重新获取该字段的值,然后再次尝试进行 CAS 操作。
这里使用的是do-while 循环。这种循环不多见,它的目的是保证循环体内的语句至少会被执行一遍。这样才能保证 return 的值是我们期望的值。
从循环条件上来,可以看到它是在不断尝试去用 CAS 更新。如果更新失败,就继续重试。
为什么要把获取“旧值”v 的操作放到循环体内呢?
这也好理解。前面我们说了,CAS 如果旧值 V 不等于预期值 E,就会更新失败。说明旧的值发生了变化。那我们当然需要返回的是被其他线程改变之后的旧值了,因此放在了 do 循环体内。
// 两个线程分别对 count 自增 50000 次
public class TestDemo2 {//public static int count = 0;public static AtomicInteger count = new AtomicInteger(0);public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {for(int i = 0; i < 50000; i++) {//count++;count.getAndIncrement();}});Thread t2 = new Thread(() -> {for(int i = 0; i < 50000; i++) {//count++;count.getAndIncrement();}});t1.start();t2.start();t1.join();t2.join();System.out.println("count: " + count);}
}
两个线程操作同一个变量,结果可能是50000到100000随机,之前我们解决线程安全的方式是通过加锁或者 volatile 。此处基于 CAS 实现了原子性的操作,省去了加锁,解决操作,更高效。
CAS 的三大问题
尽管 CAS 提供了一种有效的同步手段,但也存在一些问题,主要有以下三个:ABA 问题、长时间自旋、多个共享变量的原子操作。
ABA 问题
所谓的 ABA 问题,就是一个值原来是 A,变成了 B,又变回了 A。这个时候使用 CAS 是检查不出变化的,但实际上却被更新了两次。
ABA 问题的解决思路是在变量前面追加上版本号或者时间戳。从 JDK 1.5 开始,JDK 的 atomic 包里提供了一个类AtomicStampedReference
类来解决 ABA 问题。
这个类的compareAndSet
方法的作用是首先检查当前引用是否等于预期引用,并且检查当前标志是否等于预期标志,如果二者都相等,才使用 CAS 设置为新的值和标志。
public boolean compareAndSet(V expectedReference,V newReference,int expectedStamp,int newStamp) {Pair<V> current = pair;returnexpectedReference == current.reference &&expectedStamp == current.stamp &&((newReference == current.reference &&newStamp == current.stamp) ||casPair(current, Pair.of(newReference, newStamp)));
}
先来看参数:
- expectedReference:预期引用,也就是你认为原本应该在那个位置的引用。
- newReference:新引用,如果预期引用正确,将被设置到该位置的新引用。
- expectedStamp:预期标记,这是你认为原本应该在那个位置的标记。
- newStamp:新标记,如果预期标记正确,将被设置到该位置的新标记。
长时间自旋
CAS 多与自旋结合。如果自旋 CAS 长时间不成功,会占用大量的 CPU 资源。
解决思路是让 JVM 支持处理器提供的pause 指令。
pause 指令能让自旋失败时 cpu 睡眠一小段时间再继续自旋,从而使得读操作的频率降低很多,为解决内存顺序冲突而导致的 CPU 流水线重排的代价也会小很多。
多个共享变量的原子操作
当对一个共享变量执行操作时,CAS 能够保证该变量的原子性。但是对于多个共享变量,CAS 就无法保证操作的原子性,这时通常有两种做法:
- 使用
AtomicReference
类保证对象之间的原子性,把多个变量放到一个对象里面进行 CAS 操作; - 使用锁。锁内的临界区代码可以保证只有当前线程能操作。