Java - CAS在Java中的应用、CAS的三大问题

什么是CAS

CAS(Compare-and-Swap)是一种乐观锁的实现方式,全称为“比较并交换”,是一种无锁的原子操作。

在并发编程中,我们都知道i++操作是非线程安全的,这是因为 i++操作不是原子操作

i++语句只需要执行一条指令

但当有多个线程时,并不能保证多个线程i++,操作同一个i。因为还有寄存器的因素,多个cpu对应多个寄存器。

每次要先把i从内存复制到寄存器,然后++,然后再把i复制到内存中,这需要至少3步。

悲观锁

对于悲观锁来说,它总是认为每次访问共享资源时会发生冲突,所以必须对每次数据操作加上锁,以保证临界区的程序同一时间只能有一个线程在执行。

乐观锁

乐观锁,顾名思义,它是乐观派。乐观锁总是假设对共享资源的访问没有冲突,线程可以不停地执行,无需加锁也无需等待。一旦多个线程发生冲突,乐观锁通常使用一种称为 CAS 的技术来保证线程执行的安全性。

由于乐观锁假想操作中没有锁的存在,因此不太可能出现死锁的情况,换句话说,乐观锁天生免疫死锁

如何保证原子性

常见的做法就是加锁。

在 Java 中,我们可以使用 synchronized关键字 和 CAS(Compare-and-Swap)来实现加锁效果。

synchronized 是悲观锁,尽管随着 JDK 版本的升级,synchronized 关键字已经“轻量级”了很多,但依然是悲观锁,线程开始执行第一步就要获取锁,一旦获得锁,其他的线程进入后就会阻塞并等待锁。

CAS 是乐观锁,线程执行的时候不会加锁,它会假设此时没有冲突,然后完成某项操作;如果因为冲突失败了就重试,直到成功为止。

CAS 虽好,但也有一些问题,比如说 ABA 问题、循环时间长开销大、只能保证一个共享变量的原子操作等。在开发中,我们要根据实际情况来选择使用 CAS 还是使用锁。


什么是 CAS

在 CAS 中,有这样三个值:

  • V:要更新的变量(var)
  • E:预期值(expected)
  • N:新值(new)

比较并交换的过程如下:

判断 V 是否等于 E,如果等于,将 V 的值设置为 N;如果不等,说明已经有其它线程更新了 V,于是当前线程放弃更新,什么都不做。这里的预期值 E 本质上指的是“旧值”

我们以一个简单的例子来解释这个过程:

  1. 如果有一个多个线程共享的变量i原本等于 5,我现在在线程 A 中,想把它设置为新的值 6;
  2. 我们使用 CAS 来做这个事情;
  3. 首先我们用 i 去与 5 对比,发现它等于 5,说明没有被其它线程改过,那我就把它设置为新的值 6,此次 CAS 成功,i的值被设置成了 6;
  4. 如果不等于 5,说明i被其它线程改过了(比如现在i的值为 2),那么我就什么也不做,此次 CAS 失败,i的值仍然为 2。

在这个例子中,i就是 V,5 就是 E,6 就是 N。

那有没有可能我在判断了i为 5 之后,正准备更新它的新值的时候,被其它线程更改了i的值呢?

不会的。因为 CAS 是一种原子操作,它是一种系统原语,是一条 CPU 的原子指令,从 CPU 层面已经保证它的原子性。

当多个线程同时使用 CAS 操作一个变量时,只有一个会胜出,并成功更新,其余均会失败,但失败的线程并不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。


CAS 的原理

前面提到,CAS 是一种原子操作。那么 Java 是怎样来使用 CAS 的呢?我们知道,在 Java 中,如果一个方法是 native 的,那 Java 就不负责具体实现它,而是交给底层的 JVM 使用 C 语言 或者 C++ 去实现。

在 Java 中,有一个Unsafe类,它在sun.misc包中。它里面都是一些native方法,其中就有几个是关于 CAS 的:

boolean compareAndSwapObject(Object o, long offset,Object expected, Object x);
boolean compareAndSwapInt(Object o, long offset,int expected,int x);
boolean compareAndSwapLong(Object o, long offset,long expected,long x);

Unsafe 对 CAS 的实现是通过 C++ 实现的,它的具体实现和操作系统、CPU 都有关系。

Linux 的 X86 下主要是通过cmpxchgl这个指令在 CPU 上完成 CAS 操作的,但在多处理器情况下,必须使用lock指令加锁来完成。当然,不同的操作系统和处理器在实现方式上肯定会有所不同。

除了上面提到的方法,Unsafe 里面还有其它的方法。比如支持线程挂起和恢复的parkunpark 方法, LockSupport 类
底层就调用了这两个方法。还有支持反射操作的allocateInstance()方法。


CAS 如何实现原子操作

上面介绍了 Unsafe 类的几个支持 CAS 的方法。那 Java 具体是如何通过这几个方法来实现原子操作的呢?

JDK 提供了一些用于原子操作的类,在java.util.concurrent.atomic包下面。在 JDK 8 中,有以下这些类:

从名字就可以看出来这些类大概的用途

  • 原子更新基本类型
  • 原子更新数组
  • 原子更新引用
  • 原子更新字段(属性)

这里我们以AtomicInteger类的getAndAdd(int delta)方法为例,来看看 Java 是如何实现原子操作的。

先来看 getAndAdd 方法的源码:

public final int getAndAdd(int delta) {return unsafe.getAndAddInt(this, valueOffset, delta);
}

这里的 unsafe 其实就是一个Unsafe对象:

// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();

所以,AtomicInteger类的getAndAdd()方法是通过调用Unsafe类的方法实现的:

public final int getAndAddInt(Object var1, long var2, int var4) {int var5;do {var5 = this.getIntVolatile(var1, var2);} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));return var5;
}

让我们详细分析下这段代码,先看参数:

  • Object var1,这个参数代表你想要进行操作的对象。
  • long var2,这个参数是你想要操作的 var1 对象中的某个字段的偏移量。这个偏移量可以通过 Unsafe 类的 objectFieldOffset 方法获得。
  • int var4,这个参数是你想要增加的值。

再来看方法执行的过程:

  • 首先,在 do while 循环开始,通过this.getIntVolatile(var1, var2)获取当前对象指定字段的值,将其存入临时变量 var5 中。这里的 getIntVolatile 方法能保证读操作的可见性,即读取的结果是最新的写入结果,不会因为 JVM 的优化策略(如指令重排序
    )或者 CPU 的缓存导致读取到过期的数据。
  • 然后,执行compareAndSwapInt(var1, var2, var5, var5 + var4)进行 CAS 操作。如果对象 var1 在内存地址 var2 处的值等于预期值 var5,则将该位置的值更新为 var5 + var4,并返回 true;否则,不做任何操作并返回 false。
  • 如果 CAS 操作成功,说明我们成功地将 var1 对象的 var2 偏移量处的字段的值更新为 var5 + var4,并且这个更新操作是原子性的,因此我们跳出循环并返回原来的值 var5。
  • 如果 CAS 操作失败,说明在我们尝试更新值的时候,有其他线程修改了该字段的值,所以我们继续循环,重新获取该字段的值,然后再次尝试进行 CAS 操作。

这里使用的是do-while 循环。这种循环不多见,它的目的是保证循环体内的语句至少会被执行一遍。这样才能保证 return 的值是我们期望的值。

从循环条件上来,可以看到它是在不断尝试去用 CAS 更新。如果更新失败,就继续重试。

为什么要把获取“旧值”v 的操作放到循环体内呢?

这也好理解。前面我们说了,CAS 如果旧值 V 不等于预期值 E,就会更新失败。说明旧的值发生了变化。那我们当然需要返回的是被其他线程改变之后的旧值了,因此放在了 do 循环体内。

// 两个线程分别对 count 自增 50000 次
public class TestDemo2 {//public static int count = 0;public static AtomicInteger count = new AtomicInteger(0);public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {for(int i = 0; i < 50000; i++) {//count++;count.getAndIncrement();}});Thread t2 = new Thread(() -> {for(int i = 0; i < 50000; i++) {//count++;count.getAndIncrement();}});t1.start();t2.start();t1.join();t2.join();System.out.println("count: " + count);}
}

两个线程操作同一个变量,结果可能是50000到100000随机,之前我们解决线程安全的方式是通过加锁或者 volatile 。此处基于 CAS 实现了原子性的操作,省去了加锁,解决操作,更高效。


CAS 的三大问题

尽管 CAS 提供了一种有效的同步手段,但也存在一些问题,主要有以下三个:ABA 问题、长时间自旋、多个共享变量的原子操作。


ABA 问题

所谓的 ABA 问题,就是一个值原来是 A,变成了 B,又变回了 A。这个时候使用 CAS 是检查不出变化的,但实际上却被更新了两次。

ABA 问题的解决思路是在变量前面追加上版本号或者时间戳。从 JDK 1.5 开始,JDK 的 atomic 包里提供了一个类AtomicStampedReference类来解决 ABA 问题。

这个类的compareAndSet方法的作用是首先检查当前引用是否等于预期引用,并且检查当前标志是否等于预期标志,如果二者都相等,才使用 CAS 设置为新的值和标志。

public boolean compareAndSet(V   expectedReference,V   newReference,int expectedStamp,int newStamp) {Pair<V> current = pair;returnexpectedReference == current.reference &&expectedStamp == current.stamp &&((newReference == current.reference &&newStamp == current.stamp) ||casPair(current, Pair.of(newReference, newStamp)));
}

先来看参数:

  • expectedReference:预期引用,也就是你认为原本应该在那个位置的引用。
  • newReference:新引用,如果预期引用正确,将被设置到该位置的新引用。
  • expectedStamp:预期标记,这是你认为原本应该在那个位置的标记。
  • newStamp:新标记,如果预期标记正确,将被设置到该位置的新标记。


长时间自旋

CAS 多与自旋结合。如果自旋 CAS 长时间不成功,会占用大量的 CPU 资源。

解决思路是让 JVM 支持处理器提供的pause 指令

pause 指令能让自旋失败时 cpu 睡眠一小段时间再继续自旋,从而使得读操作的频率降低很多,为解决内存顺序冲突而导致的 CPU 流水线重排的代价也会小很多。


多个共享变量的原子操作

当对一个共享变量执行操作时,CAS 能够保证该变量的原子性。但是对于多个共享变量,CAS 就无法保证操作的原子性,这时通常有两种做法:

  1. 使用AtomicReference类保证对象之间的原子性,把多个变量放到一个对象里面进行 CAS 操作;
  2. 使用锁。锁内的临界区代码可以保证只有当前线程能操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/263384.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

111.am40刷机折腾记4-firefly镜像-dp正常显示

1. 平台&#xff1a; rk3399 am40 4g32g 2. 内核&#xff1a;firefly的内核&#xff08;整体镜像&#xff09; 版本&#xff1a; linux4.4.194 3. 交叉编译工具 &#xff1a;暂时不编译 4. 宿主机&#xff1a;ubuntu18.04 5. 需要的素材和资料&#xff1a;boot-am40-202…

python的Pandas库介绍

&#x1f388; 博主&#xff1a;一只程序猿子 &#x1f388; 博客主页&#xff1a;一只程序猿子 博客主页 &#x1f388; 个人介绍&#xff1a;爱好(bushi)编程&#xff01; &#x1f388; 创作不易&#xff1a;喜欢的话麻烦您点个&#x1f44d;和⭐&#xff01; &#x1f388;…

JavaScript中冷门但有用的String.raw

文章梗概 本文讲解的String.raw&#xff0c;作为JavaScript中的静态方法&#xff0c;用来获取模板字符串的原始字符串形式&#xff0c;需要注意的是与字符串模板搭配时候的事项。 介绍 String.raw() 静态方法是模板字符串的标签函数。它的作用类似于 Python 中的 r 前缀或 C#…

mmdetection里的测速脚本

由于大论文里需要对各个算法进行测速&#xff0c;因此抛开官方文档的使用说明&#xff0c;记录一下我是怎么使用mmdetection里的脚本进行测速的。 mmdetection版本&#xff1a;2.23.0 一、新版本benchmark.py&#xff08;需要分布式&#xff09; 打开tools/analysis_tools/b…

在Deepin中安装x11vnc工具并结合内网穿透软件实现远程访问桌面

文章目录 1. 安装x11vnc2. 本地远程连接测试3. Deepin安装Cpolar4. 配置公网远程地址5. 公网远程连接Deepin桌面6. 固定连接公网地址7. 固定公网地址连接测试 x11vnc是一种在Linux系统中实现远程桌面控制的工具&#xff0c;它的原理是通过X Window系统的协议来实现远程桌面的展…

Docker部署开源分布式任务调度平台DolphinScheduler并实现远程访问办公

文章目录 前言1. 安装部署DolphinScheduler1.1 启动服务 2. 登录DolphinScheduler界面3. 安装内网穿透工具4. 配置Dolphin Scheduler公网地址5. 固定DolphinScheduler公网地址 前言 本篇教程和大家分享一下DolphinScheduler的安装部署及如何实现公网远程访问&#xff0c;结合内…

Java连接数据库增删改查-MyBatis

准备工作&#xff1a; 1.创建一个springboot项目&#xff0c;并添加四个依赖 分别是&#xff0c;MyBatis的启动依赖和安装依赖&#xff0c;SQL的依赖&#xff0c;测试依赖&#xff0c;如下&#xff1a; 2.然后创建一张至少两条数据的表 &#xff08;表可以用各种图形化工具创…

[c]零钱兑换

题目比较简单&#xff0c;看答案就能看懂什么意思 #include<stdio.h> int main() {int count 0;int n;scanf("%d", &n);for (int i 0; i < n; i){for (int k 0; k <n/2; k){for (int j 0; j < n/5 ; j){if (i 2 * k 5 * j n){count;}}}}p…

【图片版】计算机组成原理考前复习题【第3章 存储系统-2(Cache)】

目录 前言 考前复习题&#xff08;必记&#xff09; 结尾 前言 在计算机组成原理的学习过程中&#xff0c;我们深入探索了计算机系统概述这一重要领域。计算机系统作为现代科技的核心&#xff0c;是整个计算机科学的基石。我们将学到的知识与理论转化为了能够解决现实问题…

递归的两个特点、典型案例----汉诺塔问题

一、递归的两个特点 1、要自己调用自己 2、递归函数里要有结束条件。 二、汉诺塔问题 有三根柱子&#xff0c;现在在一根柱子上&#xff0c;从下往上&#xff0c;按照大小顺序摞着很多盘子。现在要把这些盘子全部放到另一根柱子上&#xff0c;且盘子依然按照从大到小顺序摞着…

【Cisco Packet Tracer】路由器 NAT实验

NAT的实现方式有三种&#xff0c;即静态转换Static Nat、动态转换Dynamic Nat和端口多路复用OverLoad。 静态转换是指内部本地地址一对一转换成内部全局地址&#xff0c;相当内部本地的每一台PC都绑定了一个全局地址。一般用于在内网中对外提供服务的服务器。 [3] 动态转换是指…

Go Changes--Russ Cox在GopherCon 2023的演讲

本内容是Go项目负责人Russ Cox 2023年10月在 GopherCon 上发表的演讲[1] (后面重新录制)的摘要与记录. 主要内容是讲述为什么 Go 必须随着时间的推移而改变,以及为何加入遥测是重要且合适的 本次演讲不是关于Go某些特定的更改&#xff0c;而是修改的整体过程&#xff0c;特别是…