实现加盐加密方法以及java nio中基于MappedByteBuffer操作大文件

自己实现 

传统MD5可通过彩虹表暴力破解, 

加盐加密算法是一种常用的密码保护方法,它将一个随机字符串(盐)添加到原始密码中,然后再进行加密处理。

  • 1. 每次调用方法产生一个唯一盐值(UUID )+密码=最终密码。
  • 解密:需要验证的密码(用户输入的密码),最终加密的密码(存在于数据库)得到盐值,盐值存在最终密码的某个位置,——>盐值{32位}$最终密码{32位};
  •  2. 对组合后的字符串进行多次哈希计算,每次哈希时都使用盐值和先前的哈希值。哈希计算的次数由工作因子控制。

验证密码
已有:用户输入的明文密码、此用户在数据库存储的最终密码=[盐值$加密后的密码]
32位32位
1.从最终密码中得到盐值
2.将用户输入的明文密码+盐值进行加密操作=加密后的密码3.使用盐值+分隔符+加密后的密码生成数据库存储的密码
4.对比生成的最终密码和数据库最终的密码是否相等如果相等,那么用户名和密码就是对的,反之则是密码输入错误。 

package com.example.demo.common;import org.springframework.util.DigestUtils;
import org.springframework.util.StringUtils;import java.nio.charset.StandardCharsets;
import java.util.UUID;public class PasswordUtils {//1.加盐生成密码public static String encrypt(String password){//盐32位String salt= UUID.randomUUID().toString().replace("-","");String saltPassword = DigestUtils.md5DigestAsHex((salt+password).getBytes());String finalPassword=salt+"$"+saltPassword;return finalPassword;}//2.生成加盐密码public static String encrypt(String password,String salt){String saltPassword = DigestUtils.md5DigestAsHex((salt+password).getBytes());String finalPassword=salt+"$"+saltPassword;return finalPassword;}/**验证密码** @param :用户输入的明文密码* @param :数据库保存的最终密码* @return*/public static boolean check(String inputPassword , String finalPassword){if(StringUtils.hasLength(inputPassword)&&StringUtils.hasLength(finalPassword)&&finalPassword.length()==65){String salt=finalPassword.split("\\$")[0];String confirmPssword=PasswordUtils.encrypt(inputPassword,salt);return confirmPssword.equals(finalPassword);}return false;}public static void main(String[] args) {String password="123456";String finalPassword=encrypt(password);System.out.println(PasswordUtils.encrypt(password));String inputPassword="12345";String inputPassword2="123456";System.out.println("比对结果1:"+ check(inputPassword,finalPassword));System.out.println("比对结果2  :"+ check(inputPassword2,finalPassword));//check(inputPassword2,finalPassword);}
}

 

 Spring Security

是提供身份验证和授权的框架 ,可用于用户认证,访问控制,安全事件和日志记录等

还有就是Spring Security加盐

      <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifactId></dependency>

 这样甚至改了页面

当用这个认证密码授权成功后才会到我们的登录页面

所以我们要排除SpringSecurity自动加载 

@SpringBootApplication(exclude = {SecurityAutoConfiguration.class})

package com.example.demo;import org.junit.jupiter.api.Test;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.security.servlet.SecurityAutoConfiguration;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;@SpringBootTest()
class  Demo1ApplicationTests {@Testvoid contextLoads() {BCryptPasswordEncoder passwordEncoder = new BCryptPasswordEncoder();String password ="123456";// 第一次加密String finalPassword1 = passwordEncoder.encode(password);System.out.println("第1次加密:" + finalPassword1);// 第二次加密String finalPassword2 = passwordEncoder.encode(password);System.out.println("第2次加密:" + finalPassword2);// 第三次加密String finalPassword3 = passwordEncoder.encode(password);System.out.println("第3次加密:" + finalPassword3);// 验证密码String inputPassword = "12345";System.out.println("错误密码比对结果: " + (passwordEncoder.matches(inputPassword, finalPassword1)));String inputPassword2 = "123456";System.out.println("正确密码比对结果: " + (passwordEncoder.matches(inputPassword2, finalPassword1)));}}

 

java nio中一种基于MappedByteBuffer操作大文件

在Java中,处理大文件时常用的有基于`MappedByteBuffer`的NIO(New I/O)和基于`BufferedInputStream`、`BufferedOutputStream`等带缓冲的传统IO流。下面是它们之间的一些区别和相对优势:

1. 内存映射文件(MappedByteBuffer):
   - **优势**:
     - 避免了数据在Java堆内存和本地内存的多次拷贝,提高了IO操作的效率。
     - 可以利用操作系统的虚拟内存机制,对文件进行部分映射,实现了按需加载,对于大文件的处理性能更好。
     - 适合随机访问,可以直接在内存中修改文件内容,不需要通过读取和写入的方式。
   - **劣势**:
     - 需要谨慎管理内存映射,避免内存泄漏和资源未释放的问题。
     - 对于频繁读写的大文件,可能会导致内存占用过高。

2. 缓冲流(BufferedInputStream、BufferedOutputStream):
   - **优势**:
     - 通过缓冲区减少了对底层IO系统调用的次数,提高了IO操作效率。
     - 可以适应各种大小的文件读写,并且易于使用。
     - 适合顺序读写,对于较小的文件处理效率较高。
   - **劣势**:
     - 在处理大文件时,需要在Java和操作系统之间来回拷贝数据,可能会导致性能瓶颈。
     - 不支持直接在内存中修改文件内容,需要通过读取和写入的方式来进行操作。

综上所述,对于大文件的处理,基于`MappedByteBuffer`的NIO操作相对于传统的缓冲流操作具有更高的性能和更少的内存开销,特别是在需要随机访问大文件内容时,`MappedByteBuffer`更为适用。但需要注意合理管理内存映射,避免潜在的风险。而基于缓冲流的传统IO操作适用于各种大小的文件处理,易于使用,但在处理大文件时可能会存在性能瓶颈。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264601.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uc_16_UDP协议_HTTP协议

1 UDP协议 适合游戏、视频等情景&#xff0c;安全性要求不高&#xff0c;效率要求高。 1&#xff09;UDP不提供客户机与服务器的链接&#xff1a; UDP的客户机与服务器不必存在长期关系。一个UDP的客户机在通过一个套接字向一个UDP服务器发送了一个数据报之后&#xff0c;马上…

VOL-vue 框架 文件上传控件关于大文件上传等待的修改

我的项目在测试voltable列表组件中对阿里云OSS做附件上传时&#xff0c;几十M的文件可能就会需要一段时间来上传&#xff0c;才能有OSS的状态和链接返回。 但是控件VolUpload.vue并没有去在这方面做任何交互体验上的控制&#xff0c;而且VolUpload.vue本身写的几个上传函数都是…

MyBatis 四大核心组件之 Executor 源码解析

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

【计算机网络】滑动窗口 流量控制 拥塞控制 概念概述

参考资料&#xff1a;计算机网络第八版-视频课程

【大数据】Hudi 核心知识点详解(二)

&#x1f60a; 如果您觉得这篇文章有用 ✔️ 的话&#xff0c;请给博主一个一键三连 &#x1f680;&#x1f680;&#x1f680; 吧 &#xff08;点赞 &#x1f9e1;、关注 &#x1f49b;、收藏 &#x1f49a;&#xff09;&#xff01;&#xff01;&#xff01;您的支持 &#x…

docker-centos中基于keepalived+niginx模拟主从热备完整过程

文章目录 一、环境准备二、主机1、环境搭建1.1 镜像拉取1.2 创建网桥1.3 启动容器1.4 配置镜像源1.5 下载工具包1.6 下载keepalived1.7 下载nginx 2、配置2.1 配置keepalived2.2 配置nginx2.2.1 查看nginx.conf2.2.2 修改index.html 3、启动3.1 启动nginx3.2 启动keepalived 4、…

【小白专用】php执行sql脚本 更新23.12.10

可以使用 PHP 的 mysqli 扩展来执行 SQL 脚本。具体步骤如下&#xff1a; 连接到数据库&#xff1b;打开 SQL 脚本文件并读取其中的 SQL 语句&#xff1b;逐条执行 SQL 语句&#xff1b;关闭 SQL 脚本文件&#xff1b;关闭数据库连接。 以下是通过 mysqli 执行 SQL 脚本的示例…

使用eXtplorer本地搭建文件管理器并内网穿透远程访问本地数据

文章目录 1. 前言2. eXtplorer网站搭建2.1 eXtplorer下载和安装2.2 eXtplorer网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1. 前言 通过互联网传输文件&#xff0c;是互联网最重要的应用之一&#xff0c;无论是…

SpringSecurity(四)

SpringSecurity初始化的本质 一、对SpringSecurity初始化的几个疑问 通过前面第一次请求访问的分析我们明白了一个请求就来后的具体处理流程 对于一个请求到来后会通过FilterChainProxy来匹配一个对应的过滤器链来处理该请求。那么这里我们就有几个疑惑。 FilterChainProxy什…

【STM32】ADC模数转换器

1 ADC简介 ADC&#xff08;Analog-Digital Converter&#xff09;模拟-数字转换器 ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量&#xff0c;建立模拟电路到数字电路的桥梁 STM32是数字电路&#xff0c;只有高低电平&#xff0c;没有几V电压的概念&#xff…

pytorch一致数据增强

分割任务对 image 做&#xff08;某些&#xff09;transform 时&#xff0c;要对 label&#xff08;segmentation mask&#xff09;也做对应的 transform&#xff0c;如 Resize、RandomRotation 等。如果对 image、label 分别用 transform 处理一遍&#xff0c;则涉及随机操作的…

基于深度学习的超分辨率图像技术一览

超分辨率(Super-Resolution)即通过硬件或软件的方法提高原有图像的分辨率&#xff0c;图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题&#xff0c;在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。 SR取得了显著进步。一般可以将现有…