[强网拟态决赛 2023] Crypto

文章目录

    • Bad_rsa
    • Classlcal

Bad_rsa

题目描述:

from Crypto.Util.number import *f = open('flag.txt','rb')
m = bytes_to_long(f.readline().strip())p = getPrime(512)
q = getPrime(512)
e = getPrime(8)
n = p*q
phi = (p-1)*(q-1)
d = inverse(e,phi)
leak = d & ((1<<265) - 1)print(f'e = {e}')
print(f'leak = {leak}')
print(f'n = {n}')
c = pow(m,e,n)
print(f'c = {c}')'''
e = 149
leak = 6001958312144157007304943931113872134090201010357773442954181100786589106572169
n = 88436063749749362190546240596734626745594171540325086418270903156390958817492063940459108934841028734921718351342152598224670602551497995639921650979296052943953491639892805985538785565357751736799561653032725751622522198746331856539251721033316195306373318196300612386897339425222615697620795751869751705629
c = 1206332017436789083799133504302957634035030644841294494992108068042941783794804420630684301945366528832108224264145563741764232409333108261614056154508904583078897178425071831580459193200987943565099780857889864631160747321901113496943710282498262354984634755751858251005566753245882185271726628553508627299
'''

题目分析:
d低位泄露
e ∗ d = 1 + k ∗ p h i 设 s = p + q 则有 e ∗ d = k ∗ ( n − s + 1 ) + 1 设 d 的低位为 d l ( 已知 ) ⇒ e ∗ d l ≡ k ∗ ( n − s + 1 ) + 1 ( m o d 2 265 ) ① 又 p 2 + s ∗ p + n = p 2 − p 2 − p ∗ q + n = 0 ② p ∗ ① − k ∗ ② = e d l p ≡ k p n + k p + p − k p 2 − k n ( m o d 2 265 ) 如此此式子便只有 p 这个未知数了 e * d = 1 + k * phi\\ 设 s = p + q\\ 则有 e * d = k * (n - s + 1) + 1\\ 设d的低位为d_l(已知)\\ \Rightarrow e * d_l \equiv k * (n - s + 1) + 1 \pmod{2^{265}} ①\\ 又 p^2 + s * p + n = p^2 - p^2 - p * q + n = 0②\\ p * ① - k * ② = e d_lp \equiv kpn + kp + p - kp^2 - kn \pmod{2^{265}}\\ 如此此式子便只有p这个未知数了 ed=1+kphis=p+q则有ed=k(ns+1)+1d的低位为dl(已知)edlk(ns+1)+1(mod2265)p2+sp+n=p2p2pq+n=0②pk=edlpkpn+kp+pkp2kn(mod2265)如此此式子便只有p这个未知数了

解同余方程式: e d l p ≡ k p n + k p + p − k p 2 − k n ( m o d 2 265 ) e d_lp \equiv kpn + kp + p - kp^2 - kn \pmod{2^{265}} edlpkpn+kp+pkp2kn(mod2265)便能得到p的低265位 p l p_l pl
此时高247位未知,而我们又知道以下结论:

p,q 512bit ---- 未知227bit , coppersmith定理可求解 (0.38 <= beta <= 0.44)
p,q 512bit ---- 未知248bit , coppersmith定理可求解 (0.40 <= beta <= 0.49, epsilon = 0.01)
p,q 512bit ---- 未知250bit , coppersmith定理可求解 (beta = 0.5, epsilon = 0.01 , p进行求解且p > q)
p,q1024bit — 未知554bit , coppersmith定理可求解 (0.38 <= beta <= 0.44)
p,q1024bit — 未知496bit , coppersmith定理可求解 (0.40 <= beta <= 0.49, epsilon = 0.01)
p,q1024bit ----未知500bit , coppersmith定理可求解 (beta = 0.5, epsilon = 0.01 , p进行求解且p > q)

所以copper时使用X = 2^428, beta = 0.4, epsilon = 0.01即可求解出完整p,之后便是常规rsa操作得flag

exp:

from tqdm import tqdm
def getFullP(low_p, n):R.<x> = PolynomialRing(Zmod(n), implementation='NTL')p = x*2^265 + low_proot = (p-n).monic().small_roots(X = 2^248, beta = 0.4,epsilon = 0.01)if root:print(root[0])return p(root[0])return Nonedef phase4(low_d, n, c):maybe_p = []for k in range(1, 150):p = var('p')p0 = solve_mod([149*p*low_d  == p + k*(n*p - p^2 - n + p)], 2^265)maybe_p += [int(x[0]) for x in p0]print(maybe_p)for x in tqdm(maybe_p):P = getFullP(x, n)if P: breakP = int(P)print(P)d = inverse_mod(149, (P-1)*(Q-1))print(long_to_bytes(int(pow(c,d,n))))e = 149
low_d = 6001958312144157007304943931113872134090201010357773442954181100786589106572169
n = 88436063749749362190546240596734626745594171540325086418270903156390958817492063940459108934841028734921718351342152598224670602551497995639921650979296052943953491639892805985538785565357751736799561653032725751622522198746331856539251721033316195306373318196300612386897339425222615697620795751869751705629
c = 1206332017436789083799133504302957634035030644841294494992108068042941783794804420630684301945366528832108224264145563741764232409333108261614056154508904583078897178425071831580459193200987943565099780857889864631160747321901113496943710282498262354984634755751858251005566753245882185271726628553508627299phase4(low_d, n, c)# flag{827ccb0eea8a706c4c34a16891f84e7b}

Classlcal

题目描述:
在这里插入图片描述

p = ZQIUOMCEFZGVRGTBAAAAAJRTKENSNQ
c = WUJQYGCAHAAAAAGDPQXUXHIDTDLIRGC = OKCZKNCSQ_ULYOKPKW,PL.UXIWX,YCLXZFGBM_SUJLSCOXZT.AIGFZRDCIX,

题目分析:
加密表现如下,其中p,c已知
( k 11 k 12 k 13 k 14 k 15 k 21 k 22 k 23 k 24 k 25 k 31 k 32 k 13 k 34 k 15 k 41 k 42 k 43 k 44 k 45 k 51 k 52 k 53 k 54 k 55 ) ( p 1 p 2 p 3 p 4 p 5 ) + K = ( c 1 c 2 c 3 c 4 c 5 ) \begin{pmatrix} k_{11}&k_{12}&k_{13}&k_{14}&k_{15}\\ k_{21}&k_{22}&k_{23}&k_{24}&k_{25}\\ k_{31}&k_{32}&k_{13}&k_{34}&k_{15}\\ k_{41}&k_{42}&k_{43}&k_{44}&k_{45}\\ k_{51}&k_{52}&k_{53}&k_{54}&k_{55}\end{pmatrix} \begin{pmatrix} p_1\\p_{2}\\p_{3}\\p_{4}\\p_{5}\end{pmatrix}+K= \begin{pmatrix} c_{1}\\c_{2}\\c_{3}\\c_{4}\\c_{5} \end{pmatrix} k11k21k31k41k51k12k22k32k42k52k13k23k13k43k53k14k24k34k44k54k15k25k15k45k55 p1p2p3p4p5 +K= c1c2c3c4c5
一共6组,每组加密形式都是这样,密钥矩阵和K是固定的,我们的目标就是求出密钥矩阵和K,然后解C

我们用前五个明文减后五个明文,前五个密文减后五个密文即可消掉K
化简一下: k ∗ P 1 − K = C 1 ① k ∗ P 2 − K = C 2 ② k ∗ P 3 − K = C 3 ③ k ∗ P 4 − K = C 4 ④ k ∗ P 5 − K = C 5 ⑤ k ∗ P 6 − K = C 6 ⑥ 前一组减后一组: k ∗ ( P 1 − P 2 ) = ( C 1 − C 2 ) k ∗ ( P 2 − P 3 ) = ( C 2 − C 3 ) k ∗ ( P 3 − P 4 ) = ( C 3 − C 4 ) k ∗ ( P 4 − P 5 ) = ( C 4 − C 5 ) k ∗ ( P 5 − P 6 ) = ( C 5 − C 6 ) 化简一下:\\ k * P_1 - K = C_1 ①\\ k * P_2 - K = C_2 ②\\ k * P_3 - K = C_3 ③\\ k * P_4 - K = C_4 ④\\ k * P_5 - K = C_5 ⑤\\ k * P_6 - K = C_6 ⑥\\ 前一组减后一组:\\ k * (P_1 - P_2) = (C_1 - C_2)\\ k * (P_2 - P_3) = (C_2 - C_3)\\ k * (P_3 - P_4) = (C_3 - C_4)\\ k * (P_4 - P_5) = (C_4 - C_5)\\ k * (P_5 - P_6) = (C_5 - C_6)\\ 化简一下:kP1K=C1kP2K=C2kP3K=C3kP4K=C4kP5K=C5kP6K=C6前一组减后一组:k(P1P2)=(C1C2)k(P2P3)=(C2C3)k(P3P4)=(C3C4)k(P4P5)=(C4C5)k(P5P6)=(C5C6)
(注意P和p,C和c的差别,每个P由5个p组成,C由5个c组成)
得到:

( k 11 k 12 k 13 k 14 k 15 k 21 k 22 k 23 k 24 k 25 k 31 k 32 k 13 k 34 k 15 k 41 k 42 k 43 k 44 k 45 k 51 k 52 k 53 k 54 k 55 ) 5 ∗ 5 ( P 1 − P 2 P 2 − P 3 P 3 − P 4 P 4 − P 5 P 5 − P 6 ) 5 ∗ 5 = ( C 1 − C 2 C 2 − C 3 C 3 − C 4 C 4 − C 5 C 5 − C 6 ) 5 ∗ 5 \begin{pmatrix} k_{11}&k_{12}&k_{13}&k_{14}&k_{15}\\ k_{21}&k_{22}&k_{23}&k_{24}&k_{25}\\ k_{31}&k_{32}&k_{13}&k_{34}&k_{15}\\ k_{41}&k_{42}&k_{43}&k_{44}&k_{45}\\ k_{51}&k_{52}&k_{53}&k_{54}&k_{55} \end{pmatrix}_{5*5} \begin{pmatrix} P_1 - P_2\\ P_2 - P_3\\ P_3 - P_4\\ P_4 - P_5\\ P_5 - P_6 \end{pmatrix}_{5 * 5}= \begin{pmatrix} C_1 - C_2\\ C_2 - C_3\\ C_3 - C_4\\ C_4 - C_5\\ C_5 - C_6 \end{pmatrix}_{5*5} k11k21k31k41k51k12k22k32k42k52k13k23k13k43k53k14k24k34k44k54k15k25k15k45k55 55 P1P2P2P3P3P4P4P5P5P6 55= C1C2C2C3C3C4C4C5C5C6 55

其中P,C皆已知,那么密钥矩阵便能求出来,之后利用① 便能将K求出来
未知量全部求出,那么由所给的密文C便能求出flag了

先将字符串转换成对应的数字:

p = 'ZQIUOMCEFZGVRGTBAAAAAJRTKENSNQ'
c = 'WUJQYGCAHAAAAAGDPQXUXHIDTDLIRG'
C = 'OKCZKNCSQ_ULYOKPKW,PL.UXIWX,YCLXZFGBM_SUJLSCOXZT.AIGFZRDCIX,'
mapping_dict = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25, '_': 26, ',': 27, '.': 28}
pp = [mapping_dict[char] for char in p]
cc = [mapping_dict[char] for char in c]
CC = [mapping_dict[char] for char in C]
print(pp)
print(cc)
print(CC)

完整exp:

mapping_dict = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25, '_': 26, ',': 27, '.': 28}
pp = [25, 16, 8, 20, 14, 12, 2, 4, 5, 25, 6, 21, 17, 6, 19, 1, 0, 0, 0, 0, 0, 9, 17, 19, 10, 4, 13, 18, 13, 16]
cc = [22, 20, 9, 16, 24, 6, 2, 0, 7, 0, 0, 0, 0, 0, 6, 3, 15, 16, 23, 20, 23, 7, 8, 3, 19, 3, 11, 8, 17, 6]
CC = [14, 10, 2, 25, 10, 13, 2, 18, 16, 26, 20, 11, 24, 14, 10, 15, 10, 22, 27, 15, 11, 28, 20, 23, 8, 22, 23, 27, 24, 2, 11, 23, 25, 5, 6, 1, 12, 26, 18, 20, 9, 11, 18, 2, 14, 23, 25, 19, 28, 0, 8, 6, 5, 25, 17, 3, 2, 8, 23, 27]temp1 = []
temp2 = []
for i in range(0,25,5):temp1.append([(cc[j] - cc[j+5])%29 for j in range(i,i + 5)])temp2.append([(pp[j] - pp[j+5])%29 for j in range(i,i + 5)])# XA = B,求X【求key1】
B = matrix(Zmod(29),temp1).transpose()
A = matrix(Zmod(29),temp2).transpose()
key1 = A.solve_left(B)#【求key2】
temp3 = matrix(Zmod(29),pp[:5]).transpose()
temp4 = (key1 * temp3).list()
temp5 = cc[:5]
key2 = [(temp5[i] - temp4[i]) % 29 for i in range(5)]# key1 * P + key2 = C ,求P
m_list = []
for i in range(0,len(CC),5):tt = CC[i:i+5]ttt = [(tt[j] - key2[j]) % 29 for j in range(5)] B = matrix(Zmod(29),ttt).transpose() # B = C - key2 = key1 * P = B# AX = B 求X 【求最终明文】P = x.solve_right(B).list()m_list.extend(P)# 【明文数字转换成字母】
for i in m_list:for key, value in mapping_dict.items():if i == value:print(key,end = '')# QUANTUM_CRYPTOGRAPHY_IS_AN_UNBREAKABLE_SYSTEM_OF_ENCRYPTION.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264639.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

洛谷P4071 排列计数

传送门&#xff1a; P4071 [SDOI2016] 排列计数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P4071题干: 有多少个1到n的排列a&#xff0c;使得恰好有m个位置满足ai i &#xff0c; 回答T组询问&#xff0c;答案多 10^97取模 数据范围&am…

谷歌云数据中心利用地热能实现能源转型突破

随着全球气候变化问题日益严重&#xff0c;各大公司纷纷寻求更加可持续的能源解决方案。作为科技巨头的谷歌&#xff0c;近日在内华达州的数据中心取得了突破性的进展&#xff0c;开始使用100%地热能供电&#xff0c;为全球数据中心能源转型树立了新的标杆。 作为全球最大的搜…

高项备考葵花宝典-项目进度管理核心概念加强记忆

项目进度管理的核心目标是使项目按时完成。 目录 一、待办事项列表 二、看板方法 三、在制品 四、进度计划模型 五、活动清单 六、里程碑清单 七、前导图法 八、资源日历 九、活动历时估算方法 一、待办事项列表 如上图所示&#xff0c;实际工作中需求往往不是一次性全…

ActiveMQ 反序列化漏洞(CVE-2015-5254)

ActiveMQ 反序列化漏洞 Apache ActiveMQ是一种开源的消息代理&#xff08;message broker&#xff09;&#xff0c;被广泛用于应用程序之间的消息传递。它提供可靠的消息传递模式&#xff0c;如发布/订阅、点对点和请求/响应&#xff0c;非常适合构建分布式系统和应用程序集成…

mybaits 如果有自增主键id 无法从前端获取 解决方法

可以看到这个表id键是自增的 useGeneratedKeys"true" 表示要使用数据库自动生成的键&#xff08;例如自增主键&#xff09;&#xff0c;而 keyProperty"id" 则指定了用于存储生成的键值的属性名。

虚拟化之通用计时器

Arm架构包含通用定时器(Generic Timer),这是每个处理器中都有的一组标准化定时器。通用定时器包括一组比较器,这些比较器与一个共同的系统计数进行比较。当比较器的值等于或小于系统计数时,该比较器会生成中断。在下图中,我们可以看到系统中的通用定时器(橙色)以及其比…

Flutter视频播放器在iOS端和Android端都能实现全屏播放

Flutter开发过程中&#xff0c;对于视频播放的三方组件有很多&#xff0c;在Android端适配都挺好&#xff0c;但是在适配iPhone手机的时候&#xff0c;如果设置了UIInterfaceOrientationLandscapeLeft和UIInterfaceOrientationLandscapeRight都为false的情况下&#xff0c;无法…

JRT文件服务实现

网站与客户端打印和导出方面已经无大碍了&#xff0c;今天抽时间整整文件服务&#xff0c;文件服务设计可以查看下面连接。原理一样&#xff0c;代码会有些变化。 文件服务设计 首先实现文件服务的服务端&#xff0c;就是一个业务脚本&#xff0c;用来接收上传、移动和删除文件…

代码随想录二刷 |二叉树 |101. 对称二叉树

代码随想录二刷 &#xff5c;二叉树 &#xff5c;101. 对称二叉树 题目描述解题思路 & 代码实现递归法迭代法使用队列使用栈 题目描述 101.对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,…

推荐4个优秀的 Python 时间序列分析库

时间序列分析在金融和医疗保健等领域至关重要&#xff0c;在这些领域&#xff0c;理解随时间变化的数据模式至关重要。在本文中&#xff0c;我们将介绍四个主要的Python库——statmodels、tslearn、tssearch和tsfresh——每个库都针对时间序列分析的不同方面进行了定制。这些库…

调度算法1

一、 先来先服务FCFS&#xff08;First Come First Serve) 先来先服务"&#xff08;First Come, First Served&#xff0c;简称FCFS&#xff09;是一种调度算法&#xff0c;常用于处理队列中的任务或进程。它的基本原则是按照任务或进程到达的顺序进行处理&#xff0c;即先…

基于SSM的医院交互系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…