【Linux】地址空间

在这里插入图片描述
本片博客将重点回答三个问题
什么是地址空间?
地址空间是如何设计的?
为什么要有地址空间?
程序地址空间排布图
在32位下,一个进程的地址空间,取值范围是0x0000 0000~ 0xFFFF FFFF
在这里插入图片描述
回答三个问题之前我们先来证明地址空间排布是按如图所布局的
各个区空间地址验证代码

#include <unistd.h>
#include <stdio.h>                                                                                           
#include <stdlib.h>int g_unval; // 未初始化数据
int g_val = 100; // 初始化数据,一般指全局初始化数据
int main(int argc, char* argv[], char* env[]) // 命令行参数,环境变量
{// 代码地址打印                          printf("code addr: %p\n", main); printf("init global addr: %p\n", &g_val);printf("uninit global addr: %p\n", &g_unval);// 堆区,指针变量本质是变量,也要开辟空间,不过放的内容是地址char *heap_mem = (char*)malloc(10);printf("heap addr: %p\n", heap_mem);// 栈区,函数内定义的变量都是在栈上开辟空间printf("stack addr: %p\n", &heap_mem); int i = 0;for (i = 0; i < argc; i++){	// 命令行参数地址	printf("argv[%d]: %p\n", i, argv[i]);}int j = 0;for (j  = 0; env[j]; j++){printf("env[%d]: %p\n", j, env[j]);}return 0;}

运行结果
在这里插入图片描述
堆、栈之间的两个箭头表示
栈向地址减小的方向增长
堆向地址增大的方向增长
在这里插入图片描述
证明方法也很简单
在这里插入图片描述
运行结果也证明确实是这样
我们会发现堆区之间差了20字节
我们平时申请空间,系统会多给你一些空间
多出的空间用来记录你堆的属性信息
所以平时我们free空间,只要传起始地址
剩下的系统知道要free多长的空间
在这里插入图片描述

我们在系统部分要记的两个口诀
1、先描述在组织
2、堆、栈相对而生

static 修饰局部变量,本质就是将该变量开辟在全局区域

所有的字面常量将来都是要映编码进代码的
在正文代码上其实有一小段是字符常量区
在这里插入图片描述

什么是地址空间以及是如何设计的

我们平时打印各种地址其实就是进程打印,程序运行之后打印的

在解释什么是地址空间之前,我们先来讲一个故事

有一个富豪,他有5亿元家产
他有3个私生子,彼此并不知道对方存在
3个私生子分别叫张三、李四、王五
富豪为了鼓励3个儿子
对张三说你好好念书将来5亿就是你的了
对另外两个儿子也说了同样的话

因为不知道彼此存在
对于这三个儿子,他们都认为是5亿继承人
富豪给他们每一个儿子画了一个大饼

有一天,张三对他爸说要1千买学习资料
李四说我成年了想买一辆两百万的跑车
王五说我创业需要50万
富豪都给了他们需要的钱
只要他们要钱富豪都会给
有一天张三说要1亿,富豪说要这么多干嘛
拒绝了张三,即使被拒绝了张三依旧认为自己是5亿的继承人
我们站在上帝视角知道即使富豪过世了
这三个儿子不可能都拥有5亿
他们每个儿子可以断断续续的要钱
但永远要不到5亿,却依然坚信自己以后能拥有这5亿

对应关系
富豪 ---- 操作系统
儿子 ---- 进程
富豪画的饼 ---- 地址空间

在内存中的地址空间本质是一种数据结构
将来要和一个特定的进程关联起来

以前直接访问物理内存,如果有野指针的问题
可能直接访问到其他进程
内存本身是随时可以被读写
所以在老式的程序里面野指针是会直接改了其他进程的东西
结论:直接使用物理内存不安全

现代计算机的解决方式

每个进程有自己的PCB
操作系统给每个进程一个虚拟的地址空间
通过映射机制映射到物理内存
我们可能会有疑问,最终还是会访问物理内存
万一虚拟地址是一个非法地址呢
其实映射机制有一个检查机制,万一是非法地址
可以不让你映射

在这里插入图片描述

虚拟地址空间究竟是什么?

每个进程都要有地址空间
就好比操作系统要给每个进程画个饼
操作系统要给每个饼做管理
在内存中的地址空间本质是一种内核数据结构
它里面至少有各个区域的划分
在这里插入图片描述
我们把如图结构称为地址空间

区域空间并不是死的,会有一定的变化
所谓的范围变化,本质是对start 或end 标记值 + - 特定的范围即可
在这里插入图片描述
所以一个地址为什么有两个值
到这里就可以回答这个问题了

刚开始创建时只有父进程
然后创建子进程,子进程会继承父进程的属性
所以子进程的页表、地址空间和父进程一样
当子进程尝试修改变量值时
因为要保证进程的独立性
操作系统会重新为子进程,开辟一份物理内存
并修改子进程页表的映射关系
但是虚拟地址并不受影响,还是一样的地址
但映射到物理内存的不同区域
看到的值便不一样
这种策略就叫作写时拷贝

在这里插入图片描述

为什么要存在地址空间

  1. 保护物理内存
    凡是非法的访问或者映射,
    os都会识别到,并且终止你这个进程
    因为地址空间和页表是os创建并维护的
    也就意味着凡是想使用地址空间和页表
    进行映射,也一定要在OS的监管下进行访问
  2. OS耦合度更低
    因为有地址空间的存在
    因为有页表映射的存在
    我们的物理内存就可以
    对未来的数据进行任意位置的加载
    物理内存的分配就可以和
    进程的管理互不关联
    从而使内存管理模块和进程管理模块
    完成解耦合

我们在C、C++语言上new、malloc空间时
本质是在虚拟地址空间申请的
因为有地址空间的存在,所以上层申请空间
物理内存可以甚至一个字节都不给你
当你真正访问物理地址时,才执行
内存相关算法,帮你申请内存,构建
页表映射关系,这样空间使用率为100%
以此提高整机效率

  1. 保证进程的独立性
    因为有地址空间的存在,每一个进程
    都认为自己拥有4GB的空间(32)
    并且各个区域是有序的,进而
    可以通过页表映射到不同的区域
    来实现进程的独立性,每一个进程
    不知道,也不需要知道其他进程的存在

重新理解什么是挂起?

加载的本质就是创建进程,但并不是
非得把所有程序的代码和数据加载到
内存中,并创建内核数据结构建立映射关系
在极端情况下,只有内核结构被创建
此时就叫新建状态

理论上,可以实现对程序的分批加载
既然可以分批加载,自然可以分批换出
一个进程短时间不会被执行,比如阻塞
而使进程的数据和代码被换出就叫挂起

页表不仅仅映射物理内存
磁盘位置也可以映射
所以当代码挂起时,不用把数据
刷新到磁盘里。只要把空间直接释放掉,
在页表重新填上磁盘当中代码和数据的
位置,就可以完成一次基本的挂起

扩展知识

在vim中注释
Ctrl + v 进入视图模式(V-BLOCK)
hjkl 选中需要注释代码
输入大写的i,左下角出现INSERT
输入 // ,再按esc 自动注释选中的代码
取消注释还是上面的操作
选中需要注释的代码,按d删除

✨✨✨✨✨
本篇博客完,感谢阅读🌹🌹🌹
如有错误之处可评论指出,博主会耐心听取每条意见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264646.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv8改进 | Neck篇 | Slim-Neck替换特征融合层实现超级涨点 (又轻量又超级涨点)

一、本文介绍 本文给大家带来的改进机制是Slim-neck提出的Neck部分&#xff0c;Slim-neck是一种设计用于优化卷积神经网络中neck部分的结构。在我们YOLOv8中&#xff0c;neck是连接主干网络&#xff08;backbone&#xff09;和头部网络&#xff08;head&#xff09;的部分&…

Redis和MySQL双写一致性实用解析

1、背景 先阐明一下Mysql和Redis的关系&#xff1a;Mysql是数据库&#xff0c;用来持久化数据&#xff0c;一定程度上保证数据的可靠性&#xff1b;Redis是用来当缓存&#xff0c;用来提升数据访问的性能。 关于如何保证Mysql和Redis中的数据一致&#xff08;即缓存一致性问题…

[强网拟态决赛 2023] Crypto

文章目录 Bad_rsaClasslcal Bad_rsa 题目描述&#xff1a; from Crypto.Util.number import *f open(flag.txt,rb) m bytes_to_long(f.readline().strip())p getPrime(512) q getPrime(512) e getPrime(8) n p*q phi (p-1)*(q-1) d inverse(e,phi) leak d & ((1…

洛谷P4071 排列计数

传送门&#xff1a; P4071 [SDOI2016] 排列计数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P4071题干: 有多少个1到n的排列a&#xff0c;使得恰好有m个位置满足ai i &#xff0c; 回答T组询问&#xff0c;答案多 10^97取模 数据范围&am…

谷歌云数据中心利用地热能实现能源转型突破

随着全球气候变化问题日益严重&#xff0c;各大公司纷纷寻求更加可持续的能源解决方案。作为科技巨头的谷歌&#xff0c;近日在内华达州的数据中心取得了突破性的进展&#xff0c;开始使用100%地热能供电&#xff0c;为全球数据中心能源转型树立了新的标杆。 作为全球最大的搜…

高项备考葵花宝典-项目进度管理核心概念加强记忆

项目进度管理的核心目标是使项目按时完成。 目录 一、待办事项列表 二、看板方法 三、在制品 四、进度计划模型 五、活动清单 六、里程碑清单 七、前导图法 八、资源日历 九、活动历时估算方法 一、待办事项列表 如上图所示&#xff0c;实际工作中需求往往不是一次性全…

ActiveMQ 反序列化漏洞(CVE-2015-5254)

ActiveMQ 反序列化漏洞 Apache ActiveMQ是一种开源的消息代理&#xff08;message broker&#xff09;&#xff0c;被广泛用于应用程序之间的消息传递。它提供可靠的消息传递模式&#xff0c;如发布/订阅、点对点和请求/响应&#xff0c;非常适合构建分布式系统和应用程序集成…

mybaits 如果有自增主键id 无法从前端获取 解决方法

可以看到这个表id键是自增的 useGeneratedKeys"true" 表示要使用数据库自动生成的键&#xff08;例如自增主键&#xff09;&#xff0c;而 keyProperty"id" 则指定了用于存储生成的键值的属性名。

虚拟化之通用计时器

Arm架构包含通用定时器(Generic Timer),这是每个处理器中都有的一组标准化定时器。通用定时器包括一组比较器,这些比较器与一个共同的系统计数进行比较。当比较器的值等于或小于系统计数时,该比较器会生成中断。在下图中,我们可以看到系统中的通用定时器(橙色)以及其比…

Flutter视频播放器在iOS端和Android端都能实现全屏播放

Flutter开发过程中&#xff0c;对于视频播放的三方组件有很多&#xff0c;在Android端适配都挺好&#xff0c;但是在适配iPhone手机的时候&#xff0c;如果设置了UIInterfaceOrientationLandscapeLeft和UIInterfaceOrientationLandscapeRight都为false的情况下&#xff0c;无法…

JRT文件服务实现

网站与客户端打印和导出方面已经无大碍了&#xff0c;今天抽时间整整文件服务&#xff0c;文件服务设计可以查看下面连接。原理一样&#xff0c;代码会有些变化。 文件服务设计 首先实现文件服务的服务端&#xff0c;就是一个业务脚本&#xff0c;用来接收上传、移动和删除文件…

代码随想录二刷 |二叉树 |101. 对称二叉树

代码随想录二刷 &#xff5c;二叉树 &#xff5c;101. 对称二叉树 题目描述解题思路 & 代码实现递归法迭代法使用队列使用栈 题目描述 101.对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,…