OpenVINS学习2——VIRAL数据集eee01.bag运行

前言

周末休息了两天,接着做上周五那个VIRAL数据集没有运行成功的工作。现在的最新OpenVINS需要重新写配置文件,不像之前那样都写在launch里,因此需要根据数据集情况配置好estimator_config.yaml还有两个标定参数文件。

VIRAL数据集

VIRAL数据集包含雷达、相机、IMU、UWB四种数据,是南洋理工大学在22年发布的。

官网地址:https://ntu-aris.github.io/ntu_viral_dataset/
适配VIRAL的OpenVINS(旧版):https://github.com/brytsknguyen/open_vins.git

VIRAL数据集本身作者对一些常用VIO开源代码做了适配修改,其中就包括OpenVINS,但是这个是更新之前的OpenVINS,现在的使用方式配置和之前有所不同。我刚开始从Euroc的数据集配置改动,只是改VIRAL以前OpenVINS配置的参数,初始化跑不通,如下图所示。
这是VIRAL适配的openvins的配置情况,是通过launch进行配置的。

<launch><param name="/use_sim_time" value="true" /><arg name="publish_clock" default="--clock"/><!-- NTU VIRAL dataset --><!-- EEE --><arg  name="bag_file"   default="/home/merlincs/workspace/dataset/VIRAL/eee_01/eee_01.bag"/><!-- MASTER NODE! --><node name="run_serial_msckf" pkg="ov_msckf" type="run_serial_msckf" output="screen" clear_params="true" required="true"><!-- bag topics --><param name="topic_imu"      type="string" value="/imu/imu" /><param name="topic_camera0"  type="string" value="/right/image_raw" /><param name="topic_camera1"  type="string" value="/left/image_raw" /><rosparam param="stereo_pairs">[0,1]</rosparam><!-- bag parameters --><param name="path_bag"    type="string" value="$(arg bag_file)" /><!-- <param name="path_gt"     type="string" value="$(find ov_data)/euroc_mav/V1_01_easy.csv" /> --><!-- <param name="bag_start"   type="double" value="0" /> --><!-- <param name="bag_durr"    type="int"    value="-1" /> --><!-- world/filter parameters --><param name="use_fej"                type="bool"   value="true" /><param name="use_imuavg"             type="bool"   value="true" /><param name="use_rk4int"             type="bool"   value="true" /><param name="use_stereo"             type="bool"   value="true" /><param name="calib_cam_extrinsics"   type="bool"   value="true" /><param name="calib_cam_intrinsics"   type="bool"   value="true" /><param name="calib_cam_timeoffset"   type="bool"   value="true" /><param name="calib_camimu_dt"        type="double" value="0.0" /><param name="max_clones"             type="int"    value="11" /><param name="max_slam"               type="int"    value="75" /><param name="max_slam_in_update"     type="int"    value="25" /> <!-- 25 seems to work well --><param name="max_msckf_in_update"    type="int"    value="40" /><param name="max_cameras"            type="int"    value="2" /><param name="dt_slam_delay"          type="double" value="3" /><param name="init_window_time"       type="double" value="0.75" /><param name="init_imu_thresh"        type="double" value="0.25" /><rosparam param="gravity">[0.0,0.0,9.81]</rosparam><param name="feat_rep_msckf"         type="string" value="GLOBAL_3D" /><param name="feat_rep_slam"          type="string" value="ANCHORED_FULL_INVERSE_DEPTH" /><param name="feat_rep_aruco"         type="string" value="ANCHORED_FULL_INVERSE_DEPTH" /><!-- zero velocity update parameters --><param name="try_zupt"               type="bool"   value="false" /><param name="zupt_chi2_multipler"    type="int"    value="2" /><param name="zupt_max_velocity"      type="double" value="0.3" /><param name="zupt_noise_multiplier"  type="double" value="50" /><!-- timing statistics recording --><param name="record_timing_information"   type="bool"   value="false" /><param name="record_timing_filepath"      type="string" value="/tmp/timing_stereo.txt" /><!-- tracker/extractor properties --><param name="use_klt"            type="bool"   value="true" /><param name="num_pts"            type="int"    value="250" /><param name="fast_threshold"     type="int"    value="15" /><param name="grid_x"             type="int"    value="5" /><param name="grid_y"             type="int"    value="3" /><param name="min_px_dist"        type="int"    value="5" /><param name="knn_ratio"          type="double" value="0.70" /><param name="downsample_cameras" type="bool"   value="false" /><param name="multi_threading"    type="bool"   value="true" /><!-- aruco tag/mapping properties --><param name="use_aruco"        type="bool"   value="false" /><param name="num_aruco"        type="int"    value="1024" /><param name="downsize_aruco"   type="bool"   value="true" /><!-- sensor noise values / update --><param name="up_msckf_sigma_px"            type="double"   value="1" /><param name="up_msckf_chi2_multipler"      type="double"   value="1" /><param name="up_slam_sigma_px"             type="double"   value="1" /><param name="up_slam_chi2_multipler"       type="double"   value="1" /><param name="up_aruco_sigma_px"            type="double"   value="1" /><param name="up_aruco_chi2_multipler"      type="double"   value="1" /><param name="gyroscope_noise_density"      type="double"   value="5.0e-3" /><param name="gyroscope_random_walk"        type="double"   value="3.0e-6" /><param name="accelerometer_noise_density"  type="double"   value="6.0e-2" /><param name="accelerometer_random_walk"    type="double"   value="8.0e-5" /><!-- camera intrinsics --><rosparam param="cam0_wh">[752, 480]</rosparam><rosparam param="cam1_wh">[752, 480]</rosparam><param name="cam0_is_fisheye" type="bool" value="false" /><param name="cam1_is_fisheye" type="bool" value="false" /><rosparam param="cam0_k">[4.313364265799752e+02, 4.327527965378035e+02, 3.548956286992647e+02, 2.325508916495161e+02]</rosparam><rosparam param="cam0_d">[-0.300267420221178, 0.090544063693053, 3.330220891093334e-05, 8.989607188457415e-05]</rosparam><rosparam param="cam1_k">[4.250258563372763e+02, 4.267976260903337e+02, 3.860151866550880e+02, 2.419130336743440e+02]</rosparam><rosparam param="cam1_d">[-0.288105327549552, 0.074578284234601, 7.784489598138802e-04, -2.277853975035461e-04]</rosparam><!-- camera extrinsics --><rosparam param="T_C0toI">[-0.01916508, -0.01496218,  0.99970437,  0.00519443,0.99974371,  0.01176483,  0.01934191,  0.1347802,-0.01205075,  0.99981884,  0.01473287,  0.01465067,0.00000000,  0.00000000,  0.00000000,  1.00000000]</rosparam><rosparam param="T_C1toI">[0.02183084, -0.01312053,  0.99967558,  0.00552943,0.99975965,  0.00230088, -0.02180248, -0.12431302,-0.00201407,  0.99991127,  0.01316761,  0.01614686, 0.00000000,  0.00000000,  0.00000000,  1.00000000]</rosparam></node><node pkg="rviz" type="rviz" name="ov_msckf_rviz" respawn="true" output="log"args="-d $(find ov_msckf)/launch/ntuviral.rviz" /><!-- <arg name="autorun" default="false"/><node required="$(arg autorun)" pkg="rosbag" type="play" name="rosbag_play"args="$(arg publish_clock) $(arg bag_file) -r 1"/> --></launch>

对应把上面参数写入新建的config/viral中三个配置文件后跑不通:
在这里插入图片描述
在这里插入图片描述
主要原因是因为静态初始化运动检测的原因,具体原理我也还不是很清楚,下一次博客对于初始化这块做详细的学习。因此除了抄viral适配openvins中的配置外,还需要对配置文件进行一些改动,下面介绍一下配置文件各个参数含义。

配置文件详解

config文件夹内有三个配置文件:
estimator_config.yaml,kalibr_imucam_chain.yaml,kalibr_imu_chain.yaml。
第一个是针对不同数据集对估计器的配置,第二个第三个是相机和IMU的标定参数。
下面是针对viral数据集进行修改过的配置文件。(目前还只是对eee01.bag这一个数据包初始化有效)

1、estimator_config.yaml

%YAML:1.0 # need to specify the file type at the top!verbosity: "INFO" # ALL, DEBUG, INFO, WARNING, ERROR, SILENTuse_fej: true # if first-estimate Jacobians should be used (enable for good consistency)
integration: "rk4" # discrete, rk4, analytical (if rk4 or analytical used then analytical covariance propagation is used)
use_stereo: true # if we have more than 1 camera, if we should try to track stereo constraints between pairs
max_cameras: 2 # how many cameras we have 1 = mono, 2 = stereo, >2 = binocular (all mono tracking)calib_cam_extrinsics: true # if the transform between camera and IMU should be optimized R_ItoC, p_CinI
calib_cam_intrinsics: true # if camera intrinsics should be optimized (focal, center, distortion)
calib_cam_timeoffset: true # if timeoffset between camera and IMU should be optimized
calib_imu_intrinsics: false # if imu intrinsics should be calibrated (rotation and skew-scale matrix)
calib_imu_g_sensitivity: false # if gyroscope gravity sensitivity (Tg) should be calibratedmax_clones: 11 # how many clones in the sliding window
max_slam: 75 # number of features in our state vector
max_slam_in_update: 25 # update can be split into sequential updates of batches, how many in a batch
max_msckf_in_update: 40 # how many MSCKF features to use in the update
dt_slam_delay: 3 # delay before initializing (helps with stability from bad initialization...)gravity_mag: 9.81 # magnitude of gravity in this locationfeat_rep_msckf: "GLOBAL_3D"
feat_rep_slam: "ANCHORED_FULL_INVERSE_DEPTH"
feat_rep_aruco: "ANCHORED_FULL_INVERSE_DEPTH"# zero velocity update parameters we can use
# we support either IMU-based or disparity detection.
try_zupt: false
zupt_chi2_multipler: 2 # set to 0 for only disp-based
zupt_max_velocity: 0.3
zupt_noise_multiplier: 50
zupt_max_disparity: 0.5 # set to 0 for only imu-based
zupt_only_at_beginning: false# ==================================================================
# ==================================================================init_window_time: 0.75 # how many seconds to collect initialization information
init_imu_thresh: 0.25 # threshold for variance of the accelerometer to detect a "jerk" in motion
init_max_disparity: 1.0 # max disparity to consider the platform stationary (dependent on resolution)
init_max_features: 20 # how many features to track during initialization (saves on computation)init_dyn_use: false # if dynamic initialization should be used
init_dyn_mle_opt_calib: false # if we should optimize calibration during intialization (not recommended)
init_dyn_mle_max_iter: 50 # how many iterations the MLE refinement should use (zero to skip the MLE)
init_dyn_mle_max_time: 0.05 # how many seconds the MLE should be completed in
init_dyn_mle_max_threads: 6 # how many threads the MLE should use
init_dyn_num_pose: 6 # number of poses to use within our window time (evenly spaced)
init_dyn_min_deg: 10.0 # orientation change needed to try to initinit_dyn_inflation_ori: 10 # what to inflate the recovered q_GtoI covariance by
init_dyn_inflation_vel: 100 # what to inflate the recovered v_IinG covariance by
init_dyn_inflation_bg: 10 # what to inflate the recovered bias_g covariance by
init_dyn_inflation_ba: 100 # what to inflate the recovered bias_a covariance by
init_dyn_min_rec_cond: 1e-12 # reciprocal condition number thresh for info inversioninit_dyn_bias_g: [ 0.0, 0.0, 0.0 ] # initial gyroscope bias guess
init_dyn_bias_a: [ 0.0, 0.0, 0.0 ] # initial accelerometer bias guess# ==================================================================
# ==================================================================record_timing_information: false # if we want to record timing information of the method
record_timing_filepath: "/tmp/traj_timing.txt" # https://docs.openvins.com/eval-timing.html#eval-ov-timing-flame# if we want to save the simulation state and its diagional covariance
# use this with rosrun ov_eval error_simulation
save_total_state: false
filepath_est: "/tmp/ov_estimate.txt"
filepath_std: "/tmp/ov_estimate_std.txt"
filepath_gt: "/tmp/ov_groundtruth.txt"# ==================================================================
# ==================================================================# our front-end feature tracking parameters
# we have a KLT and descriptor based (KLT is better implemented...)
use_klt: true # if true we will use KLT, otherwise use a ORB descriptor + robust matching
num_pts: 250 # number of points (per camera) we will extract and try to track
fast_threshold: 15 # threshold for fast extraction (warning: lower threshs can be expensive)
grid_x: 5 # extraction sub-grid count for horizontal direction (uniform tracking)
grid_y: 3 # extraction sub-grid count for vertical direction (uniform tracking)
min_px_dist: 5 # distance between features (features near each other provide less information)
knn_ratio: 0.70 # descriptor knn threshold for the top two descriptor matches
track_frequency: 11.0 # frequency we will perform feature tracking at (in frames per second / hertz)
downsample_cameras: false # will downsample image in half if true
num_opencv_threads: -1 # -1: auto, 0-1: serial, >1: number of threads
histogram_method: "HISTOGRAM" # NONE, HISTOGRAM, CLAHE# aruco tag tracker for the system
# DICT_6X6_1000 from https://chev.me/arucogen/
use_aruco: false
num_aruco: 1024
downsize_aruco: true# ==================================================================
# ==================================================================# camera noises and chi-squared threshold multipliers
up_msckf_sigma_px: 1
up_msckf_chi2_multipler: 1
up_slam_sigma_px: 1
up_slam_chi2_multipler: 1
up_aruco_sigma_px: 1
up_aruco_chi2_multipler: 1# masks for our images
use_mask: false# imu and camera spacial-temporal
# imu config should also have the correct noise values
relative_config_imu: "kalibr_imu_chain.yaml"
relative_config_imucam: "kalibr_imucam_chain.yaml"

2、kalibr_imucam_chain.yaml

%YAML:1.0cam0:T_imu_cam: #rotation from camera to IMU R_CtoI, position of camera in IMU p_CinI- [-0.01916508, -0.01496218,  0.99970437,  0.00519443]- [0.99974371,  0.01176483,  0.01934191,  0.1347802]- [-0.01205075,  0.99981884,  0.01473287,  0.01465067]- [0.0, 0.0, 0.0, 1.0]cam_overlaps: [1]camera_model: pinhole#相机模型distortion_coeffs: [-0.300267420221178, 0.090544063693053, 3.330220891093334e-05, 8.989607188457415e-05]#畸变参数distortion_model: radtan#畸变模型intrinsics: [4.313364265799752e+02, 4.327527965378035e+02, 3.548956286992647e+02, 2.325508916495161e+02] #fu, fv, cu, cvresolution: [752, 480]#分辨率rostopic: /right/image_raw
cam1:T_imu_cam: #rotation from camera to IMU R_CtoI, position of camera in IMU p_CinI- [0.02183084, -0.01312053,  0.99967558,  0.00552943]- [0.99975965,  0.00230088, -0.02180248, -0.12431302]- [-0.00201407,  0.99991127,  0.01316761,  0.01614686]- [0.0, 0.0, 0.0, 1.0]cam_overlaps: [0]camera_model: pinholedistortion_coeffs: [-0.288105327549552, 0.074578284234601, 7.784489598138802e-04, -2.277853975035461e-04]distortion_model: radtanintrinsics: [4.250258563372763e+02, 4.267976260903337e+02, 3.860151866550880e+02, 2.419130336743440e+02] #fu, fv, cu, cvresolution: [752, 480]rostopic: /left/image_raw

3、kalibr_imu_chain.yaml

%YAML:1.0imu0:T_i_b:- [1.0, 0.0, 0.0, 0.0]- [0.0, 1.0, 0.0, 0.0]- [0.0, 0.0, 1.0, 0.0]- [0.0, 0.0, 0.0, 1.0]accelerometer_noise_density: 6.0e-2  # [ m / s^2 / sqrt(Hz) ]   ( accel "white noise" )accelerometer_random_walk: 8.0e-5    # [ m / s^3 / sqrt(Hz) ].  ( accel bias diffusion )gyroscope_noise_density: 5.0e-3    # [ rad / s / sqrt(Hz) ]   ( gyro "white noise" )gyroscope_random_walk: 3.0e-6       # [ rad / s^2 / sqrt(Hz) ] ( gyro bias diffusion )rostopic: /imu/imutime_offset: 0.0update_rate: 385.0#IMU更新频率# three different modes supported:# "calibrated" (same as "kalibr"), "kalibr", "rpng"model: "kalibr"# how to get from Kalibr imu.yaml result file:#   - Tw is imu0:gyroscopes:M:#   - R_IMUtoGYRO: is imu0:gyroscopes:C_gyro_i:#   - Ta is imu0:accelerometers:M:#   - R_IMUtoACC not used by Kalibr#   - Tg is imu0:gyroscopes:A:Tw:- [ 1.0, 0.0, 0.0 ]- [ 0.0, 1.0, 0.0 ]- [ 0.0, 0.0, 1.0 ]R_IMUtoGYRO:- [ 1.0, 0.0, 0.0 ]- [ 0.0, 1.0, 0.0 ]- [ 0.0, 0.0, 1.0 ]Ta:- [ 1.0, 0.0, 0.0 ]- [ 0.0, 1.0, 0.0 ]- [ 0.0, 0.0, 1.0 ]R_IMUtoACC:- [ 1.0, 0.0, 0.0 ]- [ 0.0, 1.0, 0.0 ]- [ 0.0, 0.0, 1.0 ]Tg:- [ 0.0, 0.0, 0.0 ]- [ 0.0, 0.0, 0.0 ]- [ 0.0, 0.0, 0.0 ]

实验结果

按照上面进行配置文件修改,然后运行如下命令

#第一个终端
roscore#第二个终端
source devel/setup.bash
roslaunch ov_msckf subscribe.launch config:=viral#第三个终端
rviz
#然后导入配置ntuviral.rviz(从viral适配的openvins中下载,在ov_msckf/launch中)#数据文件夹下打开第四个终端
rosbag play eee_01.bag

运行结果如图所示
在这里插入图片描述现在还只能在eee01.bag这一个数据包初始化能跑通,同样的配置跑eee02.bag就不行,初始化这块还是要明白原理,才能够更好地进行配置。接下来重点学习一下OpenVINS的初始化原理,看看怎么配置静态初始化和动态初始化(新版本开源的新功能应该很好用)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267562.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis 五大经典业务问题

Redis 五大经典业务问题 一 缓存穿透 缓存穿透是指当请求的数据既不在缓存中也不存在于数据库中时&#xff0c;请求会直接穿透缓存层&#xff0c;到达数据库层。这通常是由于恶意攻击或者程序错误造成的&#xff0c;比如攻击者故意请求不存在的大量数据&#xff0c;导致缓存不…

静态链接库和动态链接库(隐式载入显式载入)

文章目录 动态链接库和静态链接库什么是链接库&#xff1f;静态链接库动态链接库动态链接库的俩种链接方式加载时动态链接运行时动态链接 动态链接库和静态链接库 动态链接库和静态链接库都是共享代码的方法&#xff0c;只是二者略有区别。 以C/C为例&#xff0c;一个可执行文…

DevEco Studio 生成HPK文件

DevEco Studio 生成HPK文件 一、安装环境 操作系统: Windows 10 专业版 IDE:DevEco Studio 3.1 SDK:HarmonyOS 3.1 二、生成HPK文件 生成的HPK文件存放在entry文件夹下。下图是未生成HPK的样式。 生成HPK&#xff1a;菜单Build->Build Hap(s)/APP(s)->Build Hap(s)…

手动搭建koa+ts项目框架(日志篇)

文章目录 前言一、安装koa-logger二、引入koa-logger并使用总结如有启发&#xff0c;可点赞收藏哟~ 前言 本文基于手动搭建koats项目框架&#xff08;路由篇&#xff09;新增日志记录 一、安装koa-logger npm i -S koa-onerror and npm i -D types/koa-logger二、引入koa-lo…

Java EE 多线程之 CAS

文章目录 1. 什么是 CAS2. CAS 有那些应用2.1 实现原子类2.2 实现自旋锁2.3 ABA 问题2.3.1 ABA 问题的解决方案 1. 什么是 CAS CAS&#xff1a;全称Compare and swap 假如有一个内存 M 有两个寄存器 A B CAS(M, A, B) 如果 M 和 A 的值相同的话&#xff0c;就把 M 和 B 里的值…

和鲸科技携手深圳数据交易所,“数据+数据开发者生态”赋能人工智能产业发展

信息化时代&#xff0c;数据驱动决策的重要性日益凸显。通过利用数据可以深入了解市场需求、客户行为、竞争态势等关键信息&#xff0c;从而制定更为有效的战略和决策。围绕推动数据要素产业发展&#xff0c;近日&#xff0c;深圳数据交易所&#xff08;以下简称“深数所”&…

网络安全——Iptables防DDoS攻击实验

一、实验目的要求&#xff1a; 二、实验设备与环境&#xff1a; 三、实验原理&#xff1a; 四、实验步骤&#xff1a; 五、实验现象、结果记录及整理&#xff1a; 六、分析讨论与思考题解答&#xff1a; 一、实验目的要求&#xff1a; 1、掌握常见DDoS攻击SYN Flood的攻击…

PyTorch张量:内存布局

你可能对 torch 上的某些函数感到困惑&#xff0c;它们执行相同的操作但名称不同。 例如&#xff1a; reshape()、view()、permute()、transpose() 等。 这些函数的做法真的不同吗&#xff1f; 不&#xff01; 但为了理解它&#xff0c;我们首先需要了解一下张量在 pytorch 中…

scala集合_数组_元组_映射_列表

数组元组映射列表 1.11 集合&#xff08;scala.collection&#xff09; 集合是一种用来存储各种对象和数据的容器。Scala 集合分为可变的和不可变的集合。 1. 不可变集合可以安全的并发访问。 2. 可变集合可以在适当的地方被更新或扩展。这意味着你可以修改&#xff0c;添加…

二叉树--基础OJ

1.对称二叉树 题目链接&#xff1a;101. 对称二叉树 - 力扣&#xff08;LeetCode&#xff09; 题解&#xff1a; 我们可以用递归的方法去做&#xff1a; 如果两个树互为镜像&#xff08;1.根节点的值相同&#xff0c;2.左子树的值与右子树的值对称&#xff09;则为对称二叉树&a…

专栏十五:omicverse在单细胞分析中的实际使用体验和小改动

写一些自己的理解吧,一些小步骤,正在更新中。。。 安装 原作者写的很清楚了 大部分直接抄 个别地方:去选择下载适合自己的pytorch版本PyTorch, 比如我的是cuda12,下载命令实际是 pip3 install torch torchvision torchaudio 查看cuda版本命令 nvidia-smi 当然还有个命…

04-Nacos中负载均衡规则的配置

负载均衡规则 同集群优先 默认的ZoneAvoidanceRule实现并不能根据同集群优先的规则来实现负载均衡,Nacos中提供了一个实现叫NacosRule可以优先从同集群中挑选服务实例 当服务消费者在本地集群找不到服务提供者时也会去其他集群中寻找,但此时会在服务消费者的控制台报警告 第…