智能优化算法应用:基于入侵杂草算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于入侵杂草算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于入侵杂草算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.入侵杂草算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用入侵杂草算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.入侵杂草算法

入侵杂草算法原理请参考:https://blog.csdn.net/u011835903/article/details/108491479
入侵杂草算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

入侵杂草算法参数如下:

%% 设定入侵杂草优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明入侵杂草算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/283956.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

再次申报CSC|敏感专业老师赴欧洲理工常青藤高校-德国访学

前两年O老师申报CSC,凭借其DIY申请的英国某高校邀请函并获批CSC。但在办理ATAS认证时,两次均未通过,不得已放弃了当年的出国指标。今年再次申报时,因其敏感专业背景,我们建议申请英美以外签证易通过国家。最终我们助其…

22款奔驰GLE450升级小柏林音响 提升音质效果

开车是一种很枯燥的事,特别是在拥堵路段很容易让人变得很烦躁,在我们平常生活中汽车陪伴我们的时间是非常久的,在网上经常看到很多人把车比作老婆,为了让自己的“老婆”内在更加美,很多车友对音乐尤为热衷,…

前端带你学后端系列 ⑥【安全框架Spring Security篇二】

前端带你学后端系列 ⑥【安全框架Spring Security篇二】 Ⅰ Spring Security实战一① Spring Security中的密码加密② Spring Security四种权限控制方式③ 关于JWT,以及Spring Security 结合JWT实现登陆验证① jwt 的组成② Spring Security 结合JWT登陆验证的流程①…

社交网络分析4(下):社交网络链路预测分析、LightGBM框架、LLSLP方法(LightGBM 堆叠链路预测)、堆叠泛化 、社交网络链路预测分析的挑战

社交网络分析4 写在最前面LightGBMLightGBM简介GBDT的核心概念和应用LightGBM的特点LightGBM与GBDT的比较 LightGBM的原理与技术GBDT的传统算法LightGBM的创新算法 GOSS(Gradient-based One-Side Sampling)算法解析概念和工作原理算法的逻辑基础GOSS算法…

app上架-您的应用在运行时,未同步告知权限申请的使用目的,向用户索取(相机)等权限,不符合华为应用市场审核标准。

上架提示 您的应用在运行时,未同步告知权限申请的使用目的,向用户索取(相机)等权限,不符合华为应用市场审核标准。 测试步骤:管理-添加-点击二维码,申请相机权限 修改建议:APP在调…

PyQt6 QFileDialog文件对话框控件

锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计49条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话版…

微店商品API:电商的实时数据利器

一、引言 随着电商行业的快速发展,越来越多的消费者选择通过电商平台进行购物。微店作为电商领域的一种新型模式,凭借其便捷性和个性化服务,吸引了大量用户。为了满足用户对商品信息的快速获取需求,微店提供了商品详情API接口。本…

Spark编程实验二:RDD编程初级实践

目录 一、目的与要求 二、实验内容 三、实验步骤 1、pyspark交互式编程 2、编写独立应用程序实现数据去重 3、编写独立应用程序实现求平均值问题 4、三个综合实例 四、结果分析与实验体会 一、目的与要求 1、熟悉Spark的RDD基本操作及键值对操作; 2、熟悉使…

如何记录函数递归的次数----静态局部变量的使用

记录函数递归的次数,不像是其他普通的函数,只需要一个简单的局部变量作为计数器,每次就好了,函数递归是不断地调用函数,换言之,如果你将一个局部变量定义在函数的内部,那么每次递归都会创建一个这样的变量,每次的值都会初始化,这样也就达不到记录递归次数的目的. 为了解决这个…

极狐GitLab DevSecOps 之容器镜像安全扫描

容器镜像安全 现状 最近某银行遭受供应链攻击的事件传的沸沸扬扬,安全又双叒叕进入了人们的视野。安全确实是一个非常重要,但是又最容易被忽略的话题。但是现在到了一个不得不人人重视安全,人人为安全负责的时代。尤其以现在非常火爆的云原…

【LeetCode: 2276. 统计区间中的整数数目 | 线段树】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

龙芯loongarch64安装numpy报错“No module named ‘numpy.core._multiarray_umath‘”

前言 在之前编译安装Python3.8的文章中说明了,龙芯仓库的很多包都有问题,安装之后很多无法使用,比如安装numpy后,就会出现“No module named numpy.core._multiarray_umath” 问题复现 配置pip源 vim /etc/pip.conf 复制下面的内容并保存 [global] timeout = 60 index-url…