5 分钟内搭建一个免费问答机器人:Milvus + LangChain

搭建一个好用、便宜又准确的问答机器人需要多长时间?

答案是 5 分钟。只需借助开源的 RAG 技术栈、LangChain 以及好用的向量数据库 Milvus。必须要强调的是,该问答机器人的成本很低,因为我们在召回、评估和开发迭代的过程中不需要调用大语言模型 API。只有在最后一步——生成最终问答结果的时候会调用到 1 次 API。

如有兴趣深入了解问答机器人背后的技术,可以查看 GitHub 上的源代码(https://github.com/zilliztech/akcio)。本文完整代码可通过 Bootcamp (https://github.com/milvus-io/bootcamp/blob/master/bootcamp/RAG/readthedocs_zilliz_langchain.ipynb)获取。

在正式开始前,我们先复习一下 RAG。RAG 的主要用途是为了给生成式 AI 输出的文本提供支撑。换言之,RAG 就是通过事实、自定义数据以减少 LLM 幻觉。具体而言,在 RAG 中,我们可以使用可靠可信的自定义数据文本,如产品文档,随后从向量数据库中检索相似结果。然后,将准确的文本答案作为“上下文”和“问题”一起插入到“Prompt”中,并将其输入到诸如 OpenAI 的 ChatGPT 之类的 LLM 中。最终,LLM 生成一个基于事实的聊天答案。

alt

RAG 的具体流程:

  1. 准备可信的自定义数据和一个 Embeding 模型。

  2. 用 Encoder 对数据进行分块并生成 Embedding 向量,将数据和元数据保存在向量数据库中。

  3. 用户提出一个问题。使用第 1 步中相同的 Encoder 将问题转化为 Embedding 向量。

  4. 用向量数据库进行语义搜索来检索问题的答案。

  5. 将搜索答案文本块作为“上下文”和用户问题结果,形成 Prompt。将 Prompt 发送给 LLM。

  6. LLM 生成答案。

01.获取数据

首先介绍一下本次搭建过程中会用到的工具:

Milvus 是一款开源高性能向量数据库,可简化非结构化数据搜索流程。Milvus 可存储、索引、搜索海量 Embedding 向量数据。

OpenAI 主要开发 AI 模型和工具,其最出名的产品为 GPT。

LangChain 工具和 wrapper 库能够帮助开发人员在传统软件和 LLM 中构建一座桥梁。

我们将用到产品文档页面,ReadTheDocs 是一款开源的免费文档软件,通过 Sphinx 生成文档。

Download readthedocs pages locally.DOCS_PAGE="https://pymilvus.readthedocs.io/en/latest/"wget -r -A.html -P rtdocs --header="Accept-Charset: UTF-8" $DOCS_PAGE

上述代码将文档页面下载到本地路径rtdocs中。接着,在 LangChain 中读取这些文档:

#!pip install langchain
from langchain.document_loaders import ReadTheDocsLoader
loader = ReadTheDocsLoader("rtdocs/pymilvus.readthedocs.io/en/latest/",features="html.parser")
docs = loader.load()

02.使用 HTML 结构切分数据

需要确定分块策略、分块大小、分块重叠(chunk overlap)。本教程中,我们的配置如下所示:

  • 分块策略 = 根据 Markdown 标题结构切分。

  • 分块大小 = 使用 Embedding 模型参数 MAX_SEQ_LENGTH

  • Overlap = 10-15%

  • 函数 =

    Langchain HTMLHeaderTextSplitter 切分markdown 文件标题。

    Langchain RecursiveCharacterTextSplitter 将长文切分。

from langchain.text_splitter import HTMLHeaderTextSplitter, RecursiveCharacterTextSplitter
Define the headers to split on for the HTMLHeaderTextSplitter
headers_to_split_on = [("h1", "Header 1"),("h2", "Header 2"),]
Create an instance of the HTMLHeaderTextSplitter
html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
Use the embedding model parameters.
chunk_size = MAX_SEQ_LENGTH - HF_EOS_TOKEN_LENGTH
chunk_overlap = np.round(chunk_size * 0.10, 0)
Create an instance of the RecursiveCharacterTextSplitter
child_splitter = RecursiveCharacterTextSplitter(chunk_size = chunk_size,chunk_overlap = chunk_overlap,length_function = len,)
Split the HTML text using the HTMLHeaderTextSplitter.
html_header_splits = []
for doc in docs:splits = html_splitter.split_text(doc.page_content)for split in splits:# Add the source URL and header values to the metadatametadata = {}new_text = split.page_contentfor header_name, metadata_header_name in headers_to_split_on:header_value = new_text.split("¶ ")[0].strip()metadata[header_name] = header_valuetry:new_text = new_text.split("¶ ")[1].strip()except:breaksplit.metadata = {**metadata,"source": doc.metadata["source"]}# Add the header to the textsplit.page_content = split.page_contenthtml_header_splits.extend(splits)
Split the documents further into smaller, recursive chunks.
chunks = child_splitter.split_documents(html_header_splits)
end_time = time.time()
print(f"chunking time: {end_time - start_time}")
print(f"docs: {len(docs)}, split into: {len(html_header_splits)}")
print(f"split into chunks: {len(chunks)}, type: list of {type(chunks[0])}") 
Inspect a chunk.
print()
print("Looking at a sample chunk...")
print(chunks[1].page_content[:100])
print(chunks[1].metadata)
alt

本段文本块都有文档作为支撑。此外,标题和文本块也保存在一起,标题可以后续使用。

03.生成 Embedding 向量

最新的 MTEB 性能测试结果显示,开源 Embedding/召回模型和 OpenAI Embeddings (ada-002)效果相似。下图中分数最高的小模型是bge-large-en-v1.5,本文将选择这个模型。

alt

上图为 Embedding 模型排名表,排名最高的是voyage-lite-01-instruct(size 4.2 GB, and third rankbge-base-en-v1.5(size 1.5 GB)OpenAIEmbeddingtext-embeddings-ada-002 排名第 22。

现在,我们来初始化模型;

#pip install torch, sentence-transformers
import torch
from sentence_transformers import SentenceTransformer
Initialize torch settings
DEVICE = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
Load the encoder model from huggingface model hub.
model_name = "BAAI/bge-base-en-v1.5"
encoder = SentenceTransformer(model_name, device=DEVICE)
Get the model parameters and save for later.
MAX_SEQ_LENGTH = encoder.get_max_seq_length() 
EMBEDDING_LENGTH = encoder.get_sentence_embedding_dimension()

接着,使用模型生成 Embedding 向量,将所有数据整合成 dictionary。

chunk_list = []
for chunk in chunks:# Generate embeddings using encoder from HuggingFace.embeddings = torch.tensor(encoder.encode([chunk.page_content]))embeddings = F.normalize(embeddings, p=2, dim=1)converted_values = list(map(np.float32, embeddings))[0]# Assemble embedding vector, original text chunk, metadata.chunk_dict = {'vector': converted_values,'text': chunk.page_content,'source': chunk.metadata['source'],'h1': chunk.metadata['h1'][:50],'h2': chunk.metadata['h1'][:50],}chunk_list.append(chunk_dict)

04.在 Milvus 中创建索引并插入数据

我们将原始文本块以 vectortextsourceh1h2的形式存储在向量数据库中。

alt

启动并连接 Milvus 服务器。如需使用 serverless 集群,你需要在连接时提供ZILLIZ_API_KEY

#pip install pymilvus
from pymilvus import connections
ENDPOINT=”https://xxxx.api.region.zillizcloud.com:443”
connections.connect(uri=ENDPOINT,token=TOKEN)

创建 Milvus Collection 并命名为 MilvusDocs。Collection 类似于传统数据库中的表,其具备 Schema,定义字段和数据类型。Schema 中的向量维度应该与 Embedding 模型生成向量的维度保持一致。与此同时,创建索引:

from pymilvus import (FieldSchema, DataType, CollectionSchema, Collection)
1. Define a minimum expandable schema.
fields = [FieldSchema(“pk”, DataType.INT64, is_primary=True, auto_id=True),FieldSchema(“vector”, DataType.FLOAT_VECTOR, dim=768),]
schema = CollectionSchema(fields,enable_dynamic_field=True,)
2. Create the collection.
mc = Collection(“MilvusDocs”, schema)
3. Index the collection.
mc.create_index(field_name=”vector”,index_params={“index_type”: “AUTOINDEX”,“metric_type”: “COSINE”,}

在 Milvus/Zilliz 中插入数据的速度比 Pinecone快!

Insert data into the Milvus collection.
insert_result = mc.insert(chunk_list)
After final entity is inserted, call flush
to stop growing segments left in memory.
mc.flush() 
print(mc.partitions)
alt

05.提出问题

接下来,我们就可以用语义搜索的力量来回答有关文档的问题。语义搜索在向量空间中使用最近邻技术来找到最匹配的文档,以回答用户的问题。语义搜索的目标是理解问题和文档背后的含义,而不仅仅是匹配关键词。在检索过程中,Milvus 还可以利用元数据来增强搜索体验(在 Milvus API 选项expr=中使用布尔表达式)。

Define a sample question about your data.
QUESTION = "what is the default distance metric used in AUTOINDEX?"
QUERY = [question]
Before conducting a search, load the data into memory.
mc.load()
Embed the question using the same encoder.
embedded_question = torch.tensor(encoder.encode([QUESTION]))
Normalize embeddings to unit length.
embedded_question = F.normalize(embedded_question, p=2, dim=1)
Convert the embeddings to list of list of np.float32.
embedded_question = list(map(np.float32, embedded_question))
Return top k results with AUTOINDEX.
TOP_K = 5
Run semantic vector search using your query and the vector database.
start_time = time.time()
results = mc.search(data=embedded_question, anns_field="vector", # No params for AUTOINDEXparam={},# Boolean expression if anyexpr="",output_fields=["h1", "h2", "text", "source"], limit=TOP_K,consistency_level="Eventually")
elapsed_time = time.time() - start_time
print(f"Milvus search time: {elapsed_time} sec")
alt

下面是检索结果,我们把这些文本放入 context 字段中:

for n, hits in enumerate(results):print(f"{n}th query result")for hit in hits:print(hit)
Assemble the context as a stuffed string.
context = ""
for r in results[0]:text = r.entity.textcontext += f"{text} "
Also save the context metadata to retrieve along with the answer.
context_metadata = {"h1": results[0][0].entity.h1,"h2": results[0][0].entity.h2,"source": results[0][0].entity.source,}
alt

上图显示,检索出了 5 个文本块。其中第一个文本块中包含了问题的答案。因为我们在检索时使用了output_fields=,所以检索返回的输出字段会带上引用和元数据。

id: 445766022949255988, distance: 0.708217978477478, entity: {'chunk': "...# Optional, default MetricType.L2 } timeout (float) –An optional duration of time in seconds to allow for theRPC. …",'source': 'https://pymilvus.readthedocs.io/en/latest/api.html','h1': 'API reference','h2': 'Client'}

06.使用 LLM 根据上下文生成用户问题的回答

这一步中,我们将使用一个小型生成式 AI 模型(LLM),该模型可通过 HuggingFace 获取。

#pip install transformers
from transformers import AutoTokenizer, pipeline
tiny_llm = "deepset/tinyroberta-squad2"
tokenizer = AutoTokenizer.from_pretrained(tiny_llm)
context cannot be empty so just put random text in it.
QA_input = {'question': question,'context': 'The quick brown fox jumped over the lazy dog'}
nlp = pipeline('question-answering', model=tiny_llm, tokenizer=tokenizer)
result = nlp(QA_input)
print(f"Question: {question}")
print(f"Answer: {result['answer']}")
alt

答案不是很准确,我们用召回的文本提出同样的问题试试看:

QA_input = {'question': question,'context': context,}
nlp = pipeline('question-answering', model=tiny_llm, tokenizer=tokenizer)
result = nlp(QA_input)
Print the question, answer, grounding sources and citations.
Answer = assemble_grounding_sources(result[‘answer’], context_metadata)
print(f"Question: {question}")
print(answer)
alt

答案准确多了!

接下来,我们用 OpenAI 的 GPT 试试,发现回答结果和我们自己搭建的开源机器人相同。

def prepare_response(response):return response["choices"][-1]["message"]["content"]
def generate_response(llm, temperature=0.0, #0 for reproducible experimentsgrounding_sources=None,system_content="", assistant_content="", user_content=""):response = openai.ChatCompletion.create(model=llm,temperature=temperature,api_key=openai.api_key,messages=[{"role": "system", "content": system_content},{"role": "assistant", "content": assistant_content},{"role": "user", "content": user_content}, ])answer = prepare_response(response=response)# Add the grounding sources and citations.answer = assemble_grounding_sources(answer, grounding_sources)return answer
Generate response
response = generate_response(llm="gpt-3.5-turbo-1106",temperature=0.0,grounding_sources=context_metadata,system_content="Answer the question using the context provided. Be succinct.",user_content=f"question: {QUESTION}, context: {context}")
Print the question, answer, grounding sources and citations.
print(f"Question: {QUESTION}")
print(response)
alt

07.总结

本文完整展示了如何针对自定义文档搭建一个 RAG 聊天机器人。得益于 LangChain、Milvus 和开源的 LLM,我们轻而易举实现了对制定数据进行免费问答。在检索过程中,Milvus 提供了数据来源。我们搭建的聊天机器人是个低成本的问答机器人,因为在召回、评估和开发迭代的过程中不需要调用大语言模型 API。只有在最后一步——生成最终问答结果的时候会调用到 1 次 API。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/291659.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R语言【cli】——cli_warn可以更便捷的在控制台输出警告信息

Package cli version 3.6.2 cli_warn(message, ..., .envir parent.frame()) 参数【message】:它是通过调用 cli_bullets() 进行格式化的。进一步地,还需要调用 inline-makeup(内联标记)。 参数【...】:传递给 rlan…

LIGA-Stereo:为基于立体 3D 检测器的学习 LiDAR 几何感知表示

论文地址:https://openaccess.thecvf.com/content/ICCV2021/papers/Guo_LIGA-Stereo_Learning_LiDAR_Geometry_Aware_Representations_for_Stereo-Based_3D_Detector_ICCV_2021_paper.pdf 论文代码:https://github.com/xy-guo/LIGA-Stereo 摘要 基于立…

Jenkins Pipeline脚本优化:为Kubernetes应用部署增加状态检测

引言 在软件部署的世界中,Jenkins已经成为自动化流程的代名词。不断变化的技术环境要求我们持续改进部署流程以满足现代应用部署的需要。在本篇博客中,作为一位资深运维工程师,我将分享如何将Jenkins Pipeline进化至不仅能支持部署应用直至R…

python可以做小程序研发嘛,python能做微信小程序吗

大家好,给大家分享一下python可以做微信小程序开发吗,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! 大家好,给大家分享一下用python编写一个小程序,很多人还不知道这一点。下面详细解释一下用python代码…

OpenHarmony 4.0 Release发布,同步升级API 10

不久之前,OpenHarmony 正式发布了4.0 版本,开发套件也同步升级到 API 10。相比 3.2 Release 版本,4.0 版本新增 4000 多个 ArkTS API,应用开发能力更加丰富;HDF 新增 200 多个 HDI 接口,硬件适配更加便捷&a…

Spring Environment 注入引起NPE问题排查

文章目录 背景原因分析1)Spring Aware Bean 是什么?2)从 Spring Bean 的生命周期入手 解决方案 背景 写业务代码遇到使用 Spring Environment 注入为 null 的情况,示例代码有以下两种写法,Environment 实例都无法注入…

重塑数字生产力体系,生成式AI将开启云计算未来新十年?

科技云报道原创。 今天我们正身处一个历史的洪流,一个巨变的十字路口。生成式AI让人工智能技术完全破圈,带来了机器学习被大规模采用的历史转折点。 它掀起的新一轮科技革命,远超出我们今天的想象,这意味着一个巨大的历史机遇正…

力扣题:子序列-12.29

力扣题-12.29 [力扣刷题攻略] Re:从零开始的力扣刷题生活 力扣题1:522. 最长特殊序列 II 解题思想:首先将字符串列表按长度进行降序,然后对每个字符串进行判断是否是独有的子序列,因为短的字串可能是长的字串的子序…

在MacOS上Qt配置OpenCV并进行测试

一.Qt环境准备 上一篇博客我讲了如何下载配置OpenCV库,但是在Qt5.15.2使用OpenCV库时,出现了一个问题就是我下载的Qt5.15.2是x86架构的,不能对OpenCV库进行链接,而OpenCV库是arm架构的 直接使用Qt5.15.2编译链接OpenCV库链接头文件…

CGAL的3D Alpha Shapes

假设我们给定一个二维或三维的点集S,我们希望得到类似“这些点形成的形状”的东西。这是一个相当模糊的概念,可能有许多可能的解释,阿尔法形状就是其中之一。阿尔法形状可用于从密集的无组织数据点集进行形状重建。事实上,阿尔法形…

《A++ 敏捷开发》-1 如何改善

1 如何改善 敏捷开发过程改进案例 5月 A公司一直专门为某电信公司提供针对客服、线上播放等服务。 张工是公司的中层管理者,管理好几个开发团队,有5位项目经理向他汇报。 他听说老同学的团队都开始用敏捷开发,很感兴趣,便参加了…

nodejs+vue+微信小程序+python+PHP兴趣趣班预约管理系统设计与实现-计算机毕业设计推荐

当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。 软件信息技术能够覆盖社会各行业领域是时代的发展要求&…