R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

散点图可以直观反映数据的分布,箱线图可以展示均值等关键统计量,二者结合能够清晰呈现数据蕴含的信息。

alt

本篇笔记主要内容:介绍R语言中绘制箱线图和散点图的方法,以及二者结合展示教程,添加差异比较显著性分析,绘制如上结果图。


加载R包与数据

library(ggpubr) 
library(patchwork) 
library(ggsci)
library(tidyverse)
# 使用R语言自带的iris数据集,并随机分成两组
data <- iris
data$Group <- NA
data$Group[sample(1:nrow(data),size = (nrow(data)/2))] <- "A"
data$Group[is.na(data$Group)] <- "B"

alt 在实际数据可视化过程中,输入数据格式也和上面类似,至少有两列,其中一列是分类,另一列是数值。

绘制箱线图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)

这里将Species设置为x轴,Sepal.Width设置为y轴,箱子内部填充颜色与Species映射。 alt

这段代码的作用是创建一个箱形图,显示不同物种(Species)的萼片宽度(Sepal.Width)分布,且不同物种的箱形用不同颜色表示,并且这些颜色半透明。

这种类型的图表通常用于展示和比较不同类别或组的数据分布情况,特别是中位数、四分位数等统计信息。

绘制散点图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_jitter(aes(color = Species))
alt

利用ggplot2包创建散点图,并通过geom_jitter功能添加一些随机噪声来分散点,以便更清晰地展示数据。

绘制箱线图+散点图

p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())
p
alt

单因素多水平比较

对于两组以上的独立样品,如果数据同时满足正态性和方差齐性,可以采用方差分析(ANOVA)或者Kruskal检验,如果不满足可采用Kruskal检验。

p <- p + stat_compare_means(
    method = "kruskal.test",
    label = "p.format",
    label.x = 2,
    label.y = 4,
    show.legend = F
)
p
alt

可以看到上图中自动标注的显著性P值,通过修改label参数可以转换展示方式,默认显示检验方法和p值。

p.format只显示p值不显示检验方法,p.signif显示显著性水平符号,ns: p > 0.05、*: p <= 0.05、**: p <= 0.01、***: p <= 0.001、****: p <= 0.0001。

  • method:选择统计学检验的方法
alt

单因素两两比较

如果想看两两之间的差异显著性,例如“setosa”和“versicolor”,可以通过wilcox.test方法进行检验。

# 首先设置比较的列表
compare_list <- list(
    c("setosa","versicolor"),
    c("versicolor","virginica")
p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())+
    stat_compare_means(
    comparisons = compare_list,
    method = "wilcox.test",
    label = "p.signif")
)

代码中stat_compare_means函数提供统计学检验,调节参数可以转换方法和展示方式。 alt

双因素组内比较

如果引入分组信息作为另外一个因素,那么可以对每个水平内两组进行比较。

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)
p
alt

箱线 + 散点

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)+
    geom_jitter(position = position_jitterdodge(jitter.width = 0.5,
                                                jitter.height = 0.5,
                                                dodge.width = 0.2))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()
p
alt

position_jitterdodge函数可以调整散点图的抖动范围,scale_fill_manual用于调整填充颜色,theme_bw用于设置主题,这段代码仅作图。

统计学检验

p <- p + stat_compare_means(
    aes(group = Group),
    label = "p.format",
    show.legend = F,
    label.y = 8.5
)
p
alt

这张图x轴是不同分类,每个分类下有A和B两组,y轴表示具体的值,每个分类上有P值标注。

在实际的分析可视化过程中,还要考虑实验设计、数据分布状态等因素,合理选择检验方法,并根据目的和需求修改相应参数。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/294793.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Shell编程自动化之特殊Shell扩展变量

1.变量的处理 1.1 如果parameter变量值为空&#xff0c;那么返回str字符串。 ${parameter:-str} 1.2 如果parameter变量值为空&#xff0c;那么str替代变量值&#xff0c;且返回其值。 ${parameter:str} 1.3 如果parameter变量值为空&#xff0c;那么str当作stderr输出&am…

随机问卷调查数据的处理(uniapp)

需求&#xff1a;问卷调查 1.返回的数据中包含单选、多选、多项文本框、单文本框、图片上传 2.需要对必填的选项进行校验 3.非必填的多项文本框内容 如果不填写 不提交 表单数据格式 res{"code": 0,"msg": null,"data": [{"executeDay&…

【HarmonyOS开发】ArkTs使用Http封装

1、鸿蒙中如何进行网络请求 1.1 三方库请求 ohos/axios ohos/retrofit ohos/httpclient 1.2 鸿蒙原生请求 ohos.net.http 2、ArkTs请求模块ohos.net.http 本模块提供HTTP数据请求能力。应用可以通过HTTP发起一个数据请求&#xff0c;支持常见的GET、POST、OPTIONS、HEAD…

SuperMap iServer发布的ArcGIS REST 地图服务如何通过ArcGIS API加载

作者&#xff1a;yx 文章目录 一、发布服务二、代码加载三、结果展示 一、发布服务 SuperMap iServer支持将地图发布为ArcGIS REST地图服务&#xff0c;您可以在发布服务时直接勾选ArcGIS REST地图服务&#xff0c;如下图所示&#xff1a; 也可以在已发布的地图服务中&#x…

腾讯云服务器root登录(轻量应用服务器)

Ubuntu 系统如何使用 root 用户登录实例&#xff1f; Ubuntu 系统的默认用户名是 ubuntu&#xff0c;并在安装过程中默认不设置 root 账户和密码。您如有需要&#xff0c;可在设置中开启允许 root 用户登录。具体操作步骤如下&#xff1a; 1. 使用 ubuntu 账户登录轻量应用服…

Midjourney v6 正式发布,AI创新工坊同步更新

Midjourney v6 开发团队将从2023 年 12 月 21 日今晚开始&#xff0c;在寒假期间让社区测试Midjourney v6模型的 alpha 版本。 要打开它&#xff0c;V6请从提示下方的下拉菜单中选择/settings或--v 6在提示后键入。 Midjourney v6 基本型号有哪些新功能&#xff1f; 更准确的…

运维管理平台哪个好?如何挑选合适的运维管理平台?

运用运维管理平台来处理一些内部后勤事务或者对外的售后服务&#xff0c;是现在很多企业采用的管理方法&#xff0c;优势是成本较低&#xff0c;效率更高。那么&#xff0c;运维管理平台哪个比较好呢&#xff1f; 选择运维管理平台要先找准自己的需求&#xff0c;然后才能选出合…

普通Java项目打包可执行Jar

普通Java项目打包 IDEA配置 在项目配置中选择 Artifacts -> JAR -> From modules with dependencies 选择项目模块&#xff0c;程序主类、依赖引入方式、清单文件位置 确认Jar名称和Jar输出目录 通过 Build -> Build Artifact -> Build 打包Jar文件 Java打包可执…

postgresql|数据库|LVM快照热备冷恢复数据库的思考

一&#xff0c; LVM快照备份的意义 数据库备份一直是数据库运维工作中的重点&#xff0c;一个完备的备份不仅仅是仅有后悔药的功能&#xff0c;还可能有迁移数据库的作用。 那么&#xff0c;数据库备份系统我们需要的&#xff0c;也就是看重的是四个点&#xff0c;甚至更多的…

Qt WebAssembly开发环境配置

目录 前言1、下载Emscripten SDK2、 安装3、环境变量配置4、QtCreator配置5、运行示例程序总结 前言 本文主要介绍 Qt WebAssembly 开发环境的配置。Qt for Webassembly 可以使Qt应用程序在Web上运行。WebAssembly&#xff08;简称Wasm&#xff09;是一种能够在虚拟机中执行的…

<HarmonyOS第一课>运行Hello World

下载与安装DevEco Studio 在HarmonyOS应用开发学习之前&#xff0c;需要进行一些准备工作&#xff0c;首先需要完成开发工具DevEco Studio的下载与安装以及环境配置。 进入DevEco Studio下载官网&#xff0c;单击“立即下载”进入下载页面。 DevEco Studio提供了Windows版本和…

[SWPUCTF 2021 新生赛]jicao

首先打开环境 代码审计&#xff0c;他这儿需要进行GET传参和POST传参&#xff0c;需要进行POST请求 变量idwllmNB&#xff0c;进行GET请求变量json里需要含参数x以及jsonwllm 构造 得到flag