R软件包ConsensusCluster进行共识聚类(Consensus Clustering)

从下面论文看到这个方法:

Wang, Xin, et al. "Deep learning using bulk RNA-seq data expands cell landscape identification in tumor microenvironment." Oncoimmunology 11.1 (2022): 2043662.

这篇论文基于 AI 方法对 bulk RNA-seq 数据识别肿瘤微环境中的细胞景观。

一、描述这个聚类方法的段落:

The R package of ConsensusCluster [REF], which provides a consensus clustering approach was used to classify pancancer patients into different cancer subtypes according the cell landscape identified by DCNet model. In brief, using a manhattan distance, the cluster method of partition around medoids (PAM) was resampled by 0.8% from all cell type features in 1000 iterations. The result is a co-classification matrix with the matrix element value equal to the frequency at which each pair of samples was found in the same cluster in the 1000 iterations. The consensus cluster result was obtained by a final k-mean clustering. In order to select the number of clusters K, the cophenetic correlation coefficient was calculated and the optimal number of consensus cluster was selected as K preceding the largest drop in the cophenetic correlation coefficient.

REF: Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–1573. doi:10.1093/bioinformatics/btq170.

二、方法详细描述

共识聚类是一种用于稳健地划分样本群集的方法。在这个情境下,研究人员想要将泛癌患者划分为不同的亚型。

Step1: DCNet模型用于识别细胞景观,可能通过基因表达或其他分子数据揭示不同的细胞类型或状态。

Step2: 基于曼哈顿距离,使用PAM (Partition Around Medoids)聚类:它通过选择中心点(medoids)来划分样本。这里,PAM通过0.8%的重采样在1000次迭代中应用于所有细胞类型特征。

Step3: 结果是一个共同分类矩阵,其中每个元素表示每对样本在1000次迭代中位于相同聚类中的频率。

其中:

Step4: 最后,通过应用k均值聚类,得到了最终的共识聚类结果。

Step5: 为了选择聚类数K,计算了共形相关系数 cophenetic correlation coefficient。共形相关系数衡量了原始数据和聚类结果之间的拓扑相似性。选择具有共形相关系数下降最大的K,这可能是聚类结果的拐点。

其中“如何根据聚类结果,计算一个相似性矩阵”:

根据原始数据计算一个相似性矩阵 常用方法:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/295232.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python入门知识点分享——(八)文件的open方法

学完了Python当中的数据类型,下一步我们来了解如何用Python语言打开文件并添加内容。 目录 file mode buffering encoding errors newline closefd opener 函数 打开文件需要用到open函数,完整的语法格式如下所示,为了演示方便&…

内部FLASH模拟EPPROM

本例程基于STM32F103ZET6 FLASH大小为512K。 介绍FLASH 不同型号的 STM32,其 FLASH 容量也有所不同,最小的只有 16K 字节,最大的则达到了 1024K 字节。我们的精英 STM32 开发板选择的是 STM32F103ZET6 的 FLASH 容量为 512K 字节&#xff0…

Centos安装vsftpd:centos配置vsftpd,ftp报200和227错误

一、centos下载安装vsftpd(root权限) 1、下载安装 yum -y install vsftpd 2、vsftpd的配置文件 /etc/vsftpd.conf 3、备份原来的配置文件 sudo cp /etc/vsftpd.conf /etc/vsftpd.conf.backup 4、修改配置文件如下:vi /etc/vsftpd.conf …

基于Java SSM框架实现实现班级同学录、聚会报名网站系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现班级同学录聚会报名网站系统演示 摘要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人…

懂机器学习?先来回答这三个问题 >>

机器学习是一种数据分析技术,让计算机学习人类和动物与生俱来的能力:从经验中学习。 机器学习算法使用计算方法直接从数据中“学习”信息,而不依赖于预定方程作为模型。 随着可用于学习的样本数量的增加,算法也会相应地提高性能。…

html5实现最高端的公司年会抽奖(源码)

文章目录 1.设计来源1.1 主界面1.2 抽奖效果1.3 中奖效果 2.效果和源码配置2.1 动态效果2.2 员工信息配置2.3 奖品信息配置2.4 抽奖音效配置2.5 源代码 源码下载 作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_43151418/article/details/13517192…

C++加法运算符的重载(operator)

1.重载加法运算符 为什么要重载加法运算符? 因为C提供的加法运算符只能满足基本数据类型间的加法,如果我想让俩个相同的类的对象进行加法的话会报错 所以为了能让俩个相同类的对象进行加法,我们要把这个过程封装到一个函数里面,只…

解决 MATLAB 遗传算法中 exitflg=4 的问题

一、优化问题简介 以求解下述优化问题为例: P 1 : min ⁡ p ∑ k 1 K p k s . t . { ∑ k 1 K R k r e q l o g ( 1 α k ∗ p k ) ≤ B b s , ∀ k ∈ K p k ≥ 0 , ∀ k ∈ K \begin{align} {P_1:}&\mathop{\min}_{\bm{p}}{ \sum\limits_{k1}^K p_k } \no…

HTML+CSS做一个时尚柿子造型计时器

文章目录 💕效果展示💕代码展示HTMLJS💕效果展示 💕代码展示 HTML <!DOCTYPE html> <html lang

Featured Based知识蒸馏及代码(3): Focal and Global Knowledge (FGD)

文章目录 1. 摘要2. Focal and Global 蒸馏的原理2.1 常规的feature based蒸馏算法2.2 Focal Distillation2.3 Global Distillation2.4 total loss3. 实验论文: https://arxiv.org/pdf/2111.11837.pdf

Hive-high Avaliabl

hive—high Avaliable ​ hive的搭建方式有三种&#xff0c;分别是 ​ 1、Local/Embedded Metastore Database (Derby) ​ 2、Remote Metastore Database ​ 3、Remote Metastore Server ​ 一般情况下&#xff0c;我们在学习的时候直接使用hive –service metastore的方式…

管理 Jenkins 详细指南

目录 系统配置 安全 状态信息 故障 排除 工具和操作 系统配置 系统&#xff0c;配置全局设置和路径&#xff0c;端口更改&#xff0c;下载地址等。 工具&#xff0c;配置工具、其位置和自动安装程序。 插件&#xff0c;添加、删除、禁用或启用可以扩展 Jenkins 功能的插…