使用 Elasticsearch 检测抄袭 (二)

我在在之前的文章 “使用 Elasticsearch 检测抄袭 (一)” 介绍了如何检文章抄袭。这个在许多的实际使用中非常有意义。我在  CSDN 上的文章也经常被人引用或者抄袭。有的人甚至也不用指明出处。这对文章的作者来说是很不公平的。文章介绍的内容针对很多的博客网站也非常有意义。在那篇文章中,我觉得针对一些开发者来说,不一定能运行的很好。在今天的这篇文章中,我特意使用本地部署,并使用 jupyter notebook 来进行一个展示。这样开发者能一步一步地完整地运行起来。

安装

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

为了能够上传向量模型,我们必须订阅白金版或试用。

上传模型

注意:如果我们在这里通过命令行来进行上传模型的话,那么你就不需要在下面的代码中来实现上传。可以省去那些个步骤。

我们可以参考之前的文章 “Elasticsearch:使用 NLP 问答模型与你喜欢的圣诞歌曲交谈”。我们使用如下的命令来上传 OpenAI detection 模型:

eland_import_hub_model --url https://elastic:o6G_pvRL=8P*7on+o6XH@localhost:9200 \--hub-model-id roberta-base-openai-detector \--task-type text_classification \--ca-cert /Users/liuxg/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt \--start

在上面,我们需要根据自己的配置修改上面的证书路径,Elasticsearch 的访问地址。

我们可以在 Kibana 中查看最新上传的模型:

接下来,按照同样的方法,我们安装文本嵌入模型。

eland_import_hub_model --url https://elastic:o6G_pvRL=8P*7on+o6XH@localhost:9200 \--hub-model-id sentence-transformers/all-mpnet-base-v2 \--task-type text_embedding \--ca-cert /Users/liuxg/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt \--start	

为了方便大家学习,我们可以在如下的地址下载代码:

git clone https://github.com/liu-xiao-guo/elasticsearch-labs

我们可以在如下的位置找到 jupyter notebook:

$ pwd
/Users/liuxg/python/elasticsearch-labs/supporting-blog-content/plagiarism-detection-with-elasticsearch
$ ls
plagiarism_detection_es_self_managed.ipynb

运行代码

接下来,我们开始运行 notebook。我们首先安装相应的 python 包:

pip3 install elasticsearch==8.11
pip3 -q install eland elasticsearch sentence_transformers transformers torch==2.1.0

在运行代码之前,我们先设置如下的变量:

export ES_USER="elastic"
export ES_PASSWORD="o6G_pvRL=8P*7on+o6XH"
export ES_ENDPOINT="localhost"

我们还需要把 Elasticsearch 的证书拷贝到当前的目录中:

$ pwd
/Users/liuxg/python/elasticsearch-labs/supporting-blog-content/plagiarism-detection-with-elasticsearch
$ cp ~/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt .
$ ls
http_ca.crt                                plagiarism_detection_es_self_managed.ipynb
plagiarism_detection_es.ipynb

导入包:

from elasticsearch import Elasticsearch, helpers
from elasticsearch.client import MlClient
from eland.ml.pytorch import PyTorchModel
from eland.ml.pytorch.transformers import TransformerModel
from urllib.request import urlopen
import json
from pathlib import Path
import os

连接到 Elasticsearch

elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
client = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)print(client.info())

上传 detector 模型

hf_model_id ='roberta-base-openai-detector'
tm = TransformerModel(model_id=hf_model_id, task_type="text_classification")#set the modelID as it is named in Elasticsearch
es_model_id = tm.elasticsearch_model_id()# Download the model from Hugging Face
tmp_path = "models"
Path(tmp_path).mkdir(parents=True, exist_ok=True)
model_path, config, vocab_path = tm.save(tmp_path)# Load the model into Elasticsearch
ptm = PyTorchModel(client, es_model_id)
ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)#Start the model
s = MlClient.start_trained_model_deployment(client, model_id=es_model_id)
s.body

我们可以在 Kibana 中进行查看:

上传 text embedding 模型

hf_model_id='sentence-transformers/all-mpnet-base-v2'
tm = TransformerModel(model_id=hf_model_id, task_type="text_embedding")#set the modelID as it is named in Elasticsearch
es_model_id = tm.elasticsearch_model_id()# Download the model from Hugging Face
tmp_path = "models"
Path(tmp_path).mkdir(parents=True, exist_ok=True)
model_path, config, vocab_path = tm.save(tmp_path)# Load the model into Elasticsearch
ptm = PyTorchModel(client, es_model_id)
ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)# Start the model
s = MlClient.start_trained_model_deployment(client, model_id=es_model_id)
s.body

我们可以在 Kibana 中查看:

创建源索引

client.indices.create(
index="plagiarism-docs",
mappings= {"properties": {"title": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"abstract": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"url": {"type": "keyword"},"venue": {"type": "keyword"},"year": {"type": "keyword"}}
})

我们可以在 Kibana 中进行查看:

创建 checker ingest pipeline

client.ingest.put_pipeline(id="plagiarism-checker-pipeline",processors = [{"inference": { #for ml models - to infer against the data that is being ingested in the pipeline"model_id": "roberta-base-openai-detector", #text classification model id"target_field": "openai-detector", # Target field for the inference results"field_map": { #Maps the document field names to the known field names of the model."abstract": "text_field" # Field matching our configured trained model input. Typically for NLP models, the field name is text_field.}}},{"inference": {"model_id": "sentence-transformers__all-mpnet-base-v2", #text embedding model model id"target_field": "abstract_vector", # Target field for the inference results"field_map": { #Maps the document field names to the known field names of the model."abstract": "text_field" # Field matching our configured trained model input. Typically for NLP models, the field name is text_field.}}}]
)

我们可以在 Kibana 中进行查看:

创建 plagiarism checker 索引

client.indices.create(
index="plagiarism-checker",
mappings={
"properties": {"title": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"abstract": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"url": {"type": "keyword"},"venue": {"type": "keyword"},"year": {"type": "keyword"},"abstract_vector.predicted_value": { # Inference results field, target_field.predicted_value"type": "dense_vector","dims": 768, # embedding_size"index": "true","similarity": "dot_product" #  When indexing vectors for approximate kNN search, you need to specify the similarity function for comparing the vectors.}}
}
)

我们可以在 Kibana 中进行查看:

写入源文档

我们首先把地址 https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/emnlp2016-2018.json 里的文档下载到当前目录下:

$ pwd
/Users/liuxg/python/elasticsearch-labs/supporting-blog-content/plagiarism-detection-with-elasticsearch
$ ls
emnlp2016-2018.json                        plagiarism_detection_es.ipynb
http_ca.crt                                plagiarism_detection_es_self_managed.ipynb
models

如上所示,emnlp2016-2018.json  就是我们下载的文档。

# Load data into a JSON object
with open('emnlp2016-2018.json') as f:data_json = json.load(f)print(f"Successfully loaded {len(data_json)} documents")def create_index_body(doc):""" Generate the body for an Elasticsearch document. """return {"_index": "plagiarism-docs","_source": doc,}# Prepare the documents to be indexed
documents = [create_index_body(doc) for doc in data_json]# Use helpers.bulk to index
helpers.bulk(client, documents)print("Done indexing documents into `plagiarism-docs` source index")

我们可以在 Kibana 中进行查看:

使用 ingest pipeline 进行 reindex

client.reindex(wait_for_completion=False,source={"index": "plagiarism-docs"},dest= {"index": "plagiarism-checker","pipeline": "plagiarism-checker-pipeline"}
)

在上面,我们设置 wait_for_completion=False。这是一个异步的操作。我们需要等一段时间让上面的 reindex 完成。我们可以通过检查如下的文档数:

上面表明我们的文档已经完成。我们再接着查看一下 plagiarism-checker 索引中的文档:

检查重复文字

direct plagarism

model_text = 'Understanding and reasoning about cooking recipes is a fruitful research direction towards enabling machines to interpret procedural text. In this work, we introduce RecipeQA, a dataset for multimodal comprehension of cooking recipes. It comprises of approximately 20K instructional recipes with multiple modalities such as titles, descriptions and aligned set of images. With over 36K automatically generated question-answer pairs, we design a set of comprehension and reasoning tasks that require joint understanding of images and text, capturing the temporal flow of events and making sense of procedural knowledge. Our preliminary results indicate that RecipeQA will serve as a challenging test bed and an ideal benchmark for evaluating machine comprehension systems. The data and leaderboard are available at http://hucvl.github.io/recipeqa.'response = client.search(index='plagiarism-checker', size=1,knn={"field": "abstract_vector.predicted_value","k": 9,"num_candidates": 974,"query_vector_builder": {"text_embedding": {"model_id": "sentence-transformers__all-mpnet-base-v2","model_text": model_text}}}
)for hit in response['hits']['hits']:score = hit['_score']title = hit['_source']['title']abstract = hit['_source']['abstract']openai = hit['_source']['openai-detector']['predicted_value']url = hit['_source']['url']if score > 0.9:print(f"\nHigh similarity detected! This might be plagiarism.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")elif score < 0.7:print(f"\nLow similarity detected. This might not be plagiarism.")if openai == 'Fake':print("This document may have been created by AI.\n")else:print(f"\nModerate similarity detected.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")ml_client = MlClient(client)model_id = 'roberta-base-openai-detector' #open ai text classification modeldocument = [{"text_field": model_text}
]ml_response = ml_client.infer_trained_model(model_id=model_id, docs=document)predicted_value = ml_response['inference_results'][0]['predicted_value']if predicted_value == 'Fake':print("Note: The text query you entered may have been generated by AI.\n")

similar text - paraphrase plagiarism

model_text = 'Comprehending and deducing information from culinary instructions represents a promising avenue for research aimed at empowering artificial intelligence to decipher step-by-step text. In this study, we present CuisineInquiry, a database for the multifaceted understanding of cooking guidelines. It encompasses a substantial number of informative recipes featuring various elements such as headings, explanations, and a matched assortment of visuals. Utilizing an extensive set of automatically crafted question-answer pairings, we formulate a series of tasks focusing on understanding and logic that necessitate a combined interpretation of visuals and written content. This involves capturing the sequential progression of events and extracting meaning from procedural expertise. Our initial findings suggest that CuisineInquiry is poised to function as a demanding experimental platform.'response = client.search(index='plagiarism-checker', size=1,knn={"field": "abstract_vector.predicted_value","k": 9,"num_candidates": 974,"query_vector_builder": {"text_embedding": {"model_id": "sentence-transformers__all-mpnet-base-v2","model_text": model_text}}}
)for hit in response['hits']['hits']:score = hit['_score']title = hit['_source']['title']abstract = hit['_source']['abstract']openai = hit['_source']['openai-detector']['predicted_value']url = hit['_source']['url']if score > 0.9:print(f"\nHigh similarity detected! This might be plagiarism.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")elif score < 0.7:print(f"\nLow similarity detected. This might not be plagiarism.")if openai == 'Fake':print("This document may have been created by AI.\n")else:print(f"\nModerate similarity detected.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")ml_client = MlClient(client)model_id = 'roberta-base-openai-detector' #open ai text classification modeldocument = [{"text_field": model_text}
]ml_response = ml_client.infer_trained_model(model_id=model_id, docs=document)predicted_value = ml_response['inference_results'][0]['predicted_value']if predicted_value == 'Fake':print("Note: The text query you entered may have been generated by AI.\n")

完整的代码可以在地址下载:https://github.com/liu-xiao-guo/elasticsearch-labs/blob/main/supporting-blog-content/plagiarism-detection-with-elasticsearch/plagiarism_detection_es_self_managed.ipynb

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/295286.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用web_video_server进行网页段的视频传输

引言&#xff1a;在项目中&#xff0c;需要实现无人机摄像头采集到的图像回传到window下进行查看&#xff0c;为此&#xff0c;选择使用web_video_server功能包实现局域网下的图像传输 硬件环境&#xff1a; 硬件&#xff1a;Jetson orin nano 8G D435摄像头 环境&#xff…

Go后端开发 -- Golang的语言特性

Go后端开发 – Golang的语言特性 文章目录 Go后端开发 -- Golang的语言特性一、Golang的优势1.部署极其简单&#xff1a;2.静态语言3.语言层面的并发4.强大的标准库5.简单易学6.运行效率对比 二、Golang的适用领域1.应用领域2.明星产品 三、Golang的不足 一、Golang的优势 1.部…

[管理者与领导者-129]:很多人对高情商的误解,工程师要扩展自己的情商吗?工程师如何扩展自己的情商?

目录 前言&#xff1a; 一、什么是高情商&#xff1f; 1.1 什么是高情商 1.2 情商的五大能力 1.3 高情商的层次 1.4 对高情商的误解? 二、工程师需要发展自己的高情商吗&#xff1f; 三、工程师如何扩展自己的情商&#xff1f; 四、什么样的“高情商”的管理者令人讨…

基于Springboot的留守儿童爱心网站(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的留守儿童爱心网站(有报告)。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring…

凸优化 2:如何判定凸函数?

凸优化 2&#xff1a;如何判定凸函数&#xff1f; 如何判断一个目标函数是凸函数&#xff1f;如果是凸函数&#xff0c;那ta的定义域是凸集合 一个函数求俩次梯度&#xff0c;大于等于0&#xff0c;那这个函数就是一个凸函数在同样条件下&#xff0c;怎么设计为凸函数模型&…

4G网络架构、网元接口、网元功能介绍

一、4G架构 1、非漫游架构 3GPP接入的非漫游结构 3GPP接入的非漫游体系结构。单网关配置选项 同样在该配置选项中&#xff0c;S5可以在非并置的服务网关和PDN网关之间使用。 2、漫游架构 用于3GPP接入的漫游架构 2G/3G接入的附加接口/参考点 二、4G网元接口介绍 S1-MME&…

Leetcode算法系列| 4. 寻找两个正序数组的中位数

目录 1.题目2.题解C# 解法一&#xff1a;合并List根据长度找中位数C# 解法二&#xff1a;归并排序后根据长度找中位数C# 解法三&#xff1a;方法二的优化&#xff0c;不真实添加到listC# 解法四&#xff1a;第k小数C# 解法五&#xff1a;从中位数的概念定义入手 1.题目 给定两个…

【JMeter】JMeter控制RPS

一、前言 ​ RPS (Request Per Second)一般用来衡量服务端的吞吐量&#xff0c;相比于并发模式&#xff0c;更适合用来摸底服务端的性能。我们可以通过使用 JMeter 的常数吞吐量定时器来限制每个线程的RPS。对于RPS&#xff0c;我们可以把他理解为我们的TPS&#xff0c;我们就不…

行转列(大全)

1、统计行数&#xff0c;转成列显示。 CREATE TABLE shop_20231223 (name_ed varchar(255) DEFAULT NULL,time_ed varchar(255) DEFAULT NULL,day_ed int DEFAULT NULL ) select sum(case when day_ed 9 then 1 else 0 end) month_9, sum(case when day_ed 10 then 1 else …

指针的概念

在C语言中&#xff0c;内存单元的地址称为指针&#xff0c;专门用来存放地址的变量&#xff0c;有时对地址&#xff0c;指针和指针变量不区分&#xff0c;统称指针。&#xff08;地址指针&#xff09; 一般情况下&#xff0c;最前面的存储类型通常会省略 指针在说明的同时&…

单调栈分类、封装和总结

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 通过枚举最小&#xff08;最大&#xff09;值不重复、不遗漏枚举所有子数组 C算法&#xff1a;美丽塔O(n)解法单调栈左右寻找第一个小于maxHeight[i]的left,right&#xff0c;[left,right]直接的高度都是maxHeight[i] 可以…

Java项目-瑞吉外卖项目优化Day3

前后端分离开发 Yapi 是一个接口结合了接口测试、接口管理的管理平台&#xff0c;需要配置比较麻烦。看弹幕说用apifox更好用。可以将接口文档导出导入。 Swagger 注意下面的地址前面要有/。 效果&#xff1a; 可以在这里实现接口的测试&#xff0c;也可以导出文档等等。一般…