「Vue3面试系列」Vue3.0性能提升主要是通过哪几方面体现的?

在这里插入图片描述

文章目录

    • 一、编译阶段
        • diff算法优化
        • 静态提升
        • 事件监听缓存
        • SSR优化
    • 二、源码体积
    • 三、响应式系统
    • 参考文献

一、编译阶段

回顾Vue2,我们知道每个组件实例都对应一个 watcher 实例,它会在组件渲染的过程中把用到的数据property记录为依赖,当依赖发生改变,触发setter,则会通知watcher,从而使关联的组件重新渲染

在这里插入图片描述

试想一下,一个组件结构如下图

<template><div id="content"><p class="text">静态文本</p><p class="text">静态文本</p><p class="text">{{ message }}</p><p class="text">静态文本</p>...<p class="text">静态文本</p></div>
</template>

可以看到,组件内部只有一个动态节点,剩余一堆都是静态节点,所以这里很多 diff 和遍历其实都是不需要的,造成性能浪费

因此,Vue3在编译阶段,做了进一步优化。主要有如下:

  • diff算法优化
  • 静态提升
  • 事件监听缓存
  • SSR优化
diff算法优化

vue3diff算法中相比vue2增加了静态标记

关于这个静态标记,其作用是为了会发生变化的地方添加一个flag标记,下次发生变化的时候直接找该地方进行比较

下图这里,已经标记静态节点的p标签在diff过程中则不会比较,把性能进一步提高

在这里插入图片描述

关于静态类型枚举如下

export const enum PatchFlags {TEXT = 1,// 动态的文本节点CLASS = 1 << 1,  // 2 动态的 classSTYLE = 1 << 2,  // 4 动态的 stylePROPS = 1 << 3,  // 8 动态属性,不包括类名和样式FULL_PROPS = 1 << 4,  // 16 动态 key,当 key 变化时需要完整的 diff 算法做比较HYDRATE_EVENTS = 1 << 5,  // 32 表示带有事件监听器的节点STABLE_FRAGMENT = 1 << 6,   // 64 一个不会改变子节点顺序的 FragmentKEYED_FRAGMENT = 1 << 7, // 128 带有 key 属性的 FragmentUNKEYED_FRAGMENT = 1 << 8, // 256 子节点没有 key 的 FragmentNEED_PATCH = 1 << 9,   // 512DYNAMIC_SLOTS = 1 << 10,  // 动态 soltHOISTED = -1,  // 特殊标志是负整数表示永远不会用作 diffBAIL = -2 // 一个特殊的标志,指代差异算法
}
静态提升

Vue3中对不参与更新的元素,会做静态提升,只会被创建一次,在渲染时直接复用

这样就免去了重复的创建节点,大型应用会受益于这个改动,免去了重复的创建操作,优化了运行时候的内存占用

<span>你好</span><div>{{ message }}</div>

没有做静态提升之前

export function render(_ctx, _cache, $props, $setup, $data, $options) {return (_openBlock(), _createBlock(_Fragment, null, [_createVNode("span", null, "你好"),_createVNode("div", null, _toDisplayString(_ctx.message), 1 /* TEXT */)], 64 /* STABLE_FRAGMENT */))
}

做了静态提升之后

const _hoisted_1 = /*#__PURE__*/_createVNode("span", null, "你好", -1 /* HOISTED */)export function render(_ctx, _cache, $props, $setup, $data, $options) {return (_openBlock(), _createBlock(_Fragment, null, [_hoisted_1,_createVNode("div", null, _toDisplayString(_ctx.message), 1 /* TEXT */)], 64 /* STABLE_FRAGMENT */))
}// Check the console for the AST

静态内容_hoisted_1被放置在render 函数外,每次渲染的时候只要取 _hoisted_1 即可

同时 _hoisted_1 被打上了 PatchFlag ,静态标记值为 -1 ,特殊标志是负整数表示永远不会用于 Diff

事件监听缓存

默认情况下绑定事件行为会被视为动态绑定,所以每次都会去追踪它的变化

<div><button @click = 'onClick'>点我</button>
</div>

没开启事件监听器缓存

export const render = /*#__PURE__*/_withId(function render(_ctx, _cache, $props, $setup, $data, $options) {return (_openBlock(), _createBlock("div", null, [_createVNode("button", { onClick: _ctx.onClick }, "点我", 8 /* PROPS */, ["onClick"])// PROPS=1<<3,// 8 //动态属性,但不包含类名和样式]))
})

开启事件侦听器缓存后

export function render(_ctx, _cache, $props, $setup, $data, $options) {return (_openBlock(), _createBlock("div", null, [_createVNode("button", {onClick: _cache[1] || (_cache[1] = (...args) => (_ctx.onClick(...args)))}, "点我")]))
}

上述发现开启了缓存后,没有了静态标记。也就是说下次diff算法的时候直接使用

SSR优化

当静态内容大到一定量级时候,会用createStaticVNode方法在客户端去生成一个static node,这些静态node,会被直接innerHtml,就不需要创建对象,然后根据对象渲染

div><div><span>你好</span></div>...  // 很多个静态属性<div><span>{{ message }}</span></div>
</div>

编译后

import { mergeProps as _mergeProps } from "vue"
import { ssrRenderAttrs as _ssrRenderAttrs, ssrInterpolate as _ssrInterpolate } from "@vue/server-renderer"export function ssrRender(_ctx, _push, _parent, _attrs, $props, $setup, $data, $options) {const _cssVars = { style: { color: _ctx.color }}_push(`<div${_ssrRenderAttrs(_mergeProps(_attrs, _cssVars))}><div><span>你好</span>...<div><span>你好</span><div><span>${_ssrInterpolate(_ctx.message)}</span></div></div>`)
}

二、源码体积

相比Vue2Vue3整体体积变小了,除了移出一些不常用的API,再重要的是Tree shanking

任何一个函数,如refreavtivedcomputed等,仅仅在用到的时候才打包,没用到的模块都被摇掉,打包的整体体积变小

import { computed, defineComponent, ref } from 'vue';
export default defineComponent({setup(props, context) {const age = ref(18)let state = reactive({name: 'test'})const readOnlyAge = computed(() => age.value++) // 19return {age,state,readOnlyAge}}
});

三、响应式系统

vue2中采用 defineProperty来劫持整个对象,然后进行深度遍历所有属性,给每个属性添加gettersetter,实现响应式

vue3采用proxy重写了响应式系统,因为proxy可以对整个对象进行监听,所以不需要深度遍历

  • 可以监听动态属性的添加
  • 可以监听到数组的索引和数组length属性
  • 可以监听删除属性

关于这两个 API 具体的不同,我们下篇文章会进行一个更加详细的介绍

参考文献

  • https://juejin.cn/post/6903171037211557895

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/295291.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows漏洞利用开发——利用SEH绕过GS保护

实验6 Windows漏洞利用开发 6.1实验名称 Windows漏洞利用开发 6.2实验目的 学习windows漏洞利用开发&#xff0c;使用kali linux相关工具对windows内目标程序进行漏洞利用 6.3实验步骤及内容 第二阶段&#xff1a;利用SEH绕过GS保护 了解GS编译选项&#xff0c;SHE异常处…

【数据结构入门精讲 | 第二篇】考研408、企业面试基础概念习题

在上一篇文章中我们学习了数据结构的概念、算法复杂度的概念及其相关计算&#xff0c;这篇文章侧重考研408、企业面试数据结构的导论、算法复杂度等练习。 目录 判断题选择题编程题R7-1 最大子列和问题 判断题 1.时间复杂度是根据算法写成的程序在执行时耗费时间的长度&#xf…

C#学习笔记 - C#基础知识 - C#从入门到放弃 - C# 结构、类与属性

C# 入门基础知识 - C# 结构、类与属性 第9节 结构、类与属性9.1 结构的使用9.2 枚举9.3 面向对象概述9.4 类与对象的关系9.5 类的声明9.6 属性的使用9.6.1 属性9.6.2 属性使用 9.7 构造函数和析构函数9.7.1 构造函数9.7.2 析构函数 9.8 类的继承9.9 类的封装9.10 类的多态 更多…

使用 Elasticsearch 检测抄袭 (二)

我在在之前的文章 “使用 Elasticsearch 检测抄袭 &#xff08;一&#xff09;” 介绍了如何检文章抄袭。这个在许多的实际使用中非常有意义。我在 CSDN 上的文章也经常被人引用或者抄袭。有的人甚至也不用指明出处。这对文章的作者来说是很不公平的。文章介绍的内容针对很多的…

使用web_video_server进行网页段的视频传输

引言&#xff1a;在项目中&#xff0c;需要实现无人机摄像头采集到的图像回传到window下进行查看&#xff0c;为此&#xff0c;选择使用web_video_server功能包实现局域网下的图像传输 硬件环境&#xff1a; 硬件&#xff1a;Jetson orin nano 8G D435摄像头 环境&#xff…

Go后端开发 -- Golang的语言特性

Go后端开发 – Golang的语言特性 文章目录 Go后端开发 -- Golang的语言特性一、Golang的优势1.部署极其简单&#xff1a;2.静态语言3.语言层面的并发4.强大的标准库5.简单易学6.运行效率对比 二、Golang的适用领域1.应用领域2.明星产品 三、Golang的不足 一、Golang的优势 1.部…

[管理者与领导者-129]:很多人对高情商的误解,工程师要扩展自己的情商吗?工程师如何扩展自己的情商?

目录 前言&#xff1a; 一、什么是高情商&#xff1f; 1.1 什么是高情商 1.2 情商的五大能力 1.3 高情商的层次 1.4 对高情商的误解? 二、工程师需要发展自己的高情商吗&#xff1f; 三、工程师如何扩展自己的情商&#xff1f; 四、什么样的“高情商”的管理者令人讨…

基于Springboot的留守儿童爱心网站(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的留守儿童爱心网站(有报告)。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring…

凸优化 2:如何判定凸函数?

凸优化 2&#xff1a;如何判定凸函数&#xff1f; 如何判断一个目标函数是凸函数&#xff1f;如果是凸函数&#xff0c;那ta的定义域是凸集合 一个函数求俩次梯度&#xff0c;大于等于0&#xff0c;那这个函数就是一个凸函数在同样条件下&#xff0c;怎么设计为凸函数模型&…

4G网络架构、网元接口、网元功能介绍

一、4G架构 1、非漫游架构 3GPP接入的非漫游结构 3GPP接入的非漫游体系结构。单网关配置选项 同样在该配置选项中&#xff0c;S5可以在非并置的服务网关和PDN网关之间使用。 2、漫游架构 用于3GPP接入的漫游架构 2G/3G接入的附加接口/参考点 二、4G网元接口介绍 S1-MME&…

Leetcode算法系列| 4. 寻找两个正序数组的中位数

目录 1.题目2.题解C# 解法一&#xff1a;合并List根据长度找中位数C# 解法二&#xff1a;归并排序后根据长度找中位数C# 解法三&#xff1a;方法二的优化&#xff0c;不真实添加到listC# 解法四&#xff1a;第k小数C# 解法五&#xff1a;从中位数的概念定义入手 1.题目 给定两个…

【JMeter】JMeter控制RPS

一、前言 ​ RPS (Request Per Second)一般用来衡量服务端的吞吐量&#xff0c;相比于并发模式&#xff0c;更适合用来摸底服务端的性能。我们可以通过使用 JMeter 的常数吞吐量定时器来限制每个线程的RPS。对于RPS&#xff0c;我们可以把他理解为我们的TPS&#xff0c;我们就不…