雨课堂作业整理

第一次作业

1.下列序列是图序列的是( )
A.1,2,2,3,4,4,5
B.1,1,2,2,4,6,6
C.0,0,2,3,4,4,5
D.2,2,2,2,2,2,2

2.具有3个顶点互不同构的图有( )个
A.4 B.3 C.2 D.1

3.设图 G = ( V , E ) G=(V,E) G=(V,E),其中 V = { v 1 , v 2 , v 3 , v 4 } V=\{v_1,v_2,v_3,v_4\} V={v1,v2,v3,v4} E = { v 1 v 2 , v 1 v 3 , v 1 v 1 , v 2 v 4 , v 3 v 4 } E=\{v_1v_2,v_1v_3,v_1v_1,v_2v_4,v_3v_4\} E={v1v2,v1v3,v1v1,v2v4,v3v4},则 d ( v 1 ) = () d(v_1)=( ) d(v1)=()
A.4 B.3 C.2 D.1

4.设图 G = ( V , E ) G=(V,E) G=(V,E),其中 V = { v 1 , v 2 , v 3 , v 4 } V=\{v_1,v_2,v_3,v_4\} V={v1,v2,v3,v4} E = { v 1 v 2 , v 1 v 3 , v 1 v 1 , v 2 v 4 , v 3 v 4 } E=\{v_1v_2,v_1v_3,v_1v_1,v_2v_4,v_3v_4\} E={v1v2,v1v3,v1v1,v2v4,v3v4},则顶点导出子图 G [ { v 1 , v 2 , v 3 } ] G[\{v_1,v_2,v_3\}] G[{v1,v2,v3}] 中有( )条边
A.5 B.4 C.3 D.2

5.设图 G = ( V , E ) G=(V,E) G=(V,E),其中 V = { v 1 , v 2 , v 3 , v 4 } V=\{v_1,v_2,v_3,v_4\} V={v1,v2,v3,v4} E = { v 1 v 2 , v 1 v 3 , v 1 v 1 , v 2 v 4 , v 3 v 4 } E=\{v_1v_2,v_1v_3,v_1v_1,v_2v_4,v_3v_4\} E={v1v2,v1v3,v1v1,v2v4,v3v4},则边导出子图 G [ { v 1 v 1 , v 2 v 4 } ] G[\{v_1v_1,v_2v_4\}] G[{v1v1,v2v4}] 是图 G G G 的支撑子图。该说法( )。
A.正确 B.错误

6.若图 G G G 存在 ( u , v ) (u,v) (u,v) 闭途径,则图 G G G 中也一定存在 ( u , v ) (u,v) (u,v) 闭迹。该说法( )。
A.正确 B.错误

7.互不同构的 4 4 4 阶连通图有( )个。
A.6 B.5 C.4 D.3

8.在一个化学实验室里,有 n n n 个药箱,其中每两个不同的药箱恰有一种相同的化学品,而且每种化学品恰好在两个药箱中出现,则每个药箱有( )种化学品;这 n n n 个药箱种共有( )种不同的化学品。

9.平面上有 n n n 个点 S = { p 1 , p 2 , . . . , p n } S=\{p_1,p_2,...,p_n\} S={p1,p2,...,pn},其中任何两个点之间的距离至少是 1 1 1,证明这 n n n 个点中距离为 1 1 1 的点对数不超过 3 n 3n 3n
证明:

第二次作业

1.每对顶点都相邻的图是完全图。该说法( )。
A.正确 B.错误

2.(多选)设聚会有 n n n 人参加,已知聚会中要么有 3 3 3 个人互相都认识,要么有 3 3 3 个人相互都不认识,则参与这次聚会的人数 n n n 可能是( )。
A.7 B.6 C.5 D.4

3.如下图 G G G 是著名的 P e t e r s e n Petersen Petersen 图,关于此图说法正确的是( )。
Petersen图
A.它是二部图 B.它不是二部图

4.设有向图 D = ( V , A ) D=(V,A) D=(V,A),其中 V = { v 1 , v 2 , v 3 , v 4 } , A = { ( v 1 , v 2 ) , ( v 3 , v 4 ) , ( v 1 , v 1 ) , ( v 2 , v 4 ) , ( v 3 , v 4 ) } V=\{v_1,v_2,v_3,v_4\},A=\{(v_1,v_2),(v_3,v_4),(v_1,v_1),(v_2,v_4),(v_3,v_4)\} V={v1,v2,v3,v4}A={(v1,v2),(v3,v4),(v1,v1),(v2,v4),(v3,v4)},则 d + ( v 1 ) = d^+(v_1)= d+(v1)=( )
A.4 B.3 C.2 D.1

5.设有向图 D = ( V , A ) D=(V,A) D=(V,A),其中 V = { v 1 , v 2 , v 3 , v 4 } , A = { ( v 1 , v 2 ) , ( v 3 , v 4 ) , ( v 1 , v 1 ) , ( v 2 , v 4 ) , ( v 3 , v 4 ) } V=\{v_1,v_2,v_3,v_4\},A=\{(v_1,v_2),(v_3,v_4),(v_1,v_1),(v_2,v_4),(v_3,v_4)\} V={v1,v2,v3,v4}A={(v1,v2),(v3,v4),(v1,v1),(v2,v4),(v3,v4)},则它有( )个强连通分支。
A.4 B.3 C.2 D.1

6.任何长为奇数的闭途径中一定包含长为奇数的圈。该说法( )。
A.正确 B.错误

7.某次聚会很特别,在这次聚会中,每两个互相认识的人,都没有共同的熟人,但,每两个互不认识的人都恰有两个共同的熟人。有人宣称这次聚会的参加者一定有同样数目的熟人他的说法( )
A.正确 B.错误

8.完全二部图 K m , n K_{m,n} Km,n中有( )条边。

9.构造一个 7 7 7 4 4 4 正则简单图。

第三次作业

1.设 A ( G ) = A(G)= A(G)=
( 1 2 0 2 2 1 0 1 3 ) (3) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix} \tag{3} 120221013 (3),则顶点 v 1 v_1 v1 的度 d ( v 1 ) = d(v_1)= d(v1)=
A.5 B.4 C.3

2.设 A ( G ) = A(G)= A(G)=
( 1 2 0 2 2 1 0 1 3 ) (3) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix} \tag{3} 120221013 (3),则顶点 v 2 v_2 v2 v 2 v_2 v2 且长为 2 2 2 的不同路径有( )条。
A.9 B.8 C.7 D.6

3.设 A ( G ) = A(G)= A(G)=
( 0 0 1 2 1 1 1 3 0 ) (3) \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 3 & 0 \end{pmatrix} \tag{3} 021013110 (3),则有向图 D D D 中的有向边 ( v 2 , v 3 ) (v_2,v_3) (v2,v3) 有( )条。
A.3 B.2 C.1 D.0

4.设有向图 D = ( V , A ) D=(V,A) D=(V,A),其中 V = { v 1 , v 2 , v 3 } , A = { ( v 1 , v 2 ) , ( v 1 , v 3 ) , ( v 2 , v 3 ) , ( v 3 , v 2 ) } V=\{v_1,v_2,v_3\},A=\{(v_1,v_2),(v_1,v_3),(v_2,v_3),(v_3,v_2)\} V={v1,v2,v3}A={(v1,v2),(v1,v3),(v2,v3),(v3,v2)},则关联矩阵 M ( D ) = M(D)= M(D)=( )
A. [ 1 1 0 0 − 1 0 1 − 1 0 − 1 − 1 1 ] \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & -1 & -1 & 1 \end{bmatrix} 110101011011
B. [ − 1 − 1 0 0 1 0 − 1 1 0 1 1 − 1 ] \begin{bmatrix} -1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} 110101011011
C. [ 1 1 0 0 1 0 1 1 0 1 1 1 ] \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} 110101011011
5.设 G G G 如下图所示,则 ε ( G − v ) = \varepsilon(G-v)= ε(Gv)= ( )
习题3.5
A.8 B.6 C.4 D.2

6.设 G 1 , G 2 G_1,G_2 G1,G2 分别如下图所示,则 v ( G 1 ∪ G 2 ) = v(G_1 \cup G_2)= v(G1G2)=( )
习题3.6
A.5 B.4 C.3 D.2

7.设 G G G 如下图所示,则 G ⋅ e G·e Ge 的基础简单图有( )条边。
习题3.7
A.11 B.10 C.9 D.8

8.求下图 v 1 v_1 v1 v 2 v_2 v2 的最短路( )。
习题3.8
9.判断下图能否转化为笛卡尔积的形式,简述理由。
习题3.9

第四次作业

1.互不同构的六阶树有( )个。
A.10 B.8 C.6 D.4

2.已知 G G G 为简单图,且 v ( G ) = ε ( G ) = 2023 v(G)=\varepsilon(G)=2023 v(G)=ε(G)=2023,下列说法正确的是( )。
A. G G G 中一定有圈
B. G G G 一定连通
C. G G G 中不一定有圈
D. G G G 不一定联通

3.(多选)下列选项中有可能是树图的度序列的有 ()
A.(1,2,2,2,2,3)
B.(0,1,1,2,3,3)
C.(1,1,1,2,2,3)
D.(1,1,1,1,2,4)

4.(多选)设 G G G 是连通图, e ∈ E ( G ) e \in E(G) eE(G),则 w ( G − e ) w(G -e) w(Ge) 可能是( )
A.1 B.2 C.3 D.4

5.设图 G G G v v v 个顶点、 ε \varepsilon ε 条边和 ω \omega ω 个连通分支, G G G 中不同圈的个数为 n n n,则下列关于 n n n 的说法最恰当的是( )。
A. n ≥ ε − v n \geq \varepsilon-v nεv
B. n ≥ ε − v + ω n \geq \varepsilon-v+\omega nεv+ω
C. n ≤ ε − v − ω n \leq \varepsilon-v-\omega nεvω
D. n ≤ v − ω n \leq v-\omega nvω

6.设 G G G 如下图所示,则 τ ( G ) = \tau(G)= τ(G)=( )。
习题4.6
A.8 B.6 C.5 D.4

7. τ ( K 5 ) = \tau(K_5)= τ(K5)=( )。
A. 5 10 5^{10} 510 B. 5 8 5^8 58 C. 5 5 5^5 55 D. 5 3 5^3 53

8.设 G G G 如下图所示,则 G G G 中含有边 e e e 的支撑树有( )。
习题4.8
9.设 T T T 是一棵树,其平均度为 α \alpha α,求 v ( T ) v(T) v(T)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/311137.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

性能测试-jmeter:安装 / 基础使用

一、理解jmeter 官网-Apache JMeter-Apache JMeter™ JMeter是一款开源的性能测试工具,主要用于模拟大量用户并发访问目标服务器,以评估服务器的性能和稳定性。 JMeter可以执行以下任务序号用途描述1性能测试通过模拟多个用户在同一时间对服务器进行请…

PythonTSK Study for first day (paper read)

HTSK model Study AbstractIntroductionII TSK for high-dimentional datasetIII ResultsA DatesetB AlgorithmC性能评估 Abstract The TSK Fuzzy System with Gaussian membership functions can not address high dimentional datasets, if add softmax function to solve i…

使用Android Studio等idea工具开发flutter应用,必备的debug调试技能,非常好用

我们程序员不论开发什么软件,都需要一把锋利的调试工具,这是必不可少的,不然出现问题了,你都不知道问题是啥,出现在哪,就更别说怎么解决了。所以我这里就介绍一下android studio开发flutter必备的调试技能&…

【数据结构—堆排序、top k问题和时间复杂度】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、堆排序(升序) 1.1向上调整算法: 1.2向下调整算法: 1.3、堆排序的实现: 二、top k问题 2.1top k…

Python+Django+Mysql+SimpleUI搭建后端用户管理系统(非常详细,每一步都清晰,列举了里面所有使用的方法属性)

一、在Anaconda环境下创建虚拟环境 (1)打开Anaconda Prompt(install),创建虚拟环境,如下图所示: 方法一:默认情况下虚拟环境创建在Anaconda安装目录下的envs文件夹中 conda create --name usermanage …

高频面试题:合并两个List并去重

欢迎关注微信公众号:互联网全栈架构 合并两个List中并去掉重复的元素,有好几种方法,我们来看看常见的三种: 一、使用HashSet HashSet是一个没有重复元素的集合,可以利用这个特性,把List中的元素逐一添加到H…

简单几步制作翻页电子画册

翻页电子画册是一种非常流行的电子书形式,它能够以生动、美观、有趣的方式展示您的内容。如果您想要制作自己的翻页电子画册,以下是一些简单的步骤,可以帮助您轻松上手。 首先,你需要一款在线制作电子杂志平台。比如FLBOOK&#x…

java8开发常用的日期操作,纯干货分享

首先介绍java8关于日期和时间比较常用的一些类: Java 8 推出了全新的日期时间API,在教程中我们将通过一些简单的实例来学习如何使用新API。 Java处理日期、日历和时间的方式一直为社区所诟病,将 java.util.Date设定为可变类型,以…

5G阅信助力互联网行业:XX出行-出票通知,案例分析

XX出行日常有大量业务通知短信下发,用户触达频次和用户打开率都比较高,但原短信无法带来附加营销增值,通过阅信增值服务消息将两者结合起来,可实现业务的多渠道引流,开拓了新的渠道和方式。 项目概述: 1. 项…

WAZUH的安装、设置代理

wazuh安装 wazu的安装分为以下两种方式 官方文档:https://wazuh.com/blog/detecting-common-linux-persistence-techniques-with-wazuh/ 1、自定义安装 这种方式就是一步一步的安装 直接参考官方文档: 这里就不详细介绍了 2、直接下载打包好的虚拟机…

vscode调用HTML文件

vscode实现对HTML文件调用 创建html文件下载拓展内容点击拓展查找需要的拓展 导入html代码设置默认打开浏览器运行结果参考文献 做数据库课设的内容,尝试一些自己没有接触过的东西,了解如何创建一个网站以及数据库的一个应用 创建html文件 创建一个html的文件,加入后缀名 下…

从仿写持久层框架到MyBatis核心源码阅读

接上篇手写持久层框架:https://blog.csdn.net/liwenyang1992/article/details/134884703 MyBatis源码 MyBatis架构原理&主要组件 MyBatis架构设计 MyBatis架构四层作用是什么呢? API接口层:提供API,增加、删除、修改、查询…