竞赛保研 基于大数据的股票量化分析与股价预测系统

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 设计原理
    • QTCharts
    • arma模型预测
    • K-means聚类算法
    • 算法实现关键问题说明
  • 4 部分核心代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的股票量化分析与股价预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于大数据的股票可视化分析平台设计,对股票数据进行预处理,清洗以及可视化分析,同时设计了软件界面。

2 实现效果

价格可视化
在这里插入图片描述
魔梯访问与指标计算

在这里插入图片描述
聚类分析
在这里插入图片描述

3 设计原理

QTCharts

简介

QtCharts是Qt自带的组件库,其中包含折线、曲线、饼图、棒图、散点图、雷达图等各种常用的图表。而在地面站开发过程中,使用折线图可以对无人机的一些状态数据进行监测,更是可以使用散点图来模拟飞机所在位置,实现平面地图的感觉。

使用Qt
Charts绘制,大概可以分为四个部分:数据(QXYSeries)、图表(QChart)、坐标轴(QAbstractAXis)和视图(QChartView)。这里就不一一给大家介绍了,下面给大家说一下QtCharts的配置安装。

QtCharts模块的C++类

在这里插入图片描述

arma模型预测

简介

ARMA模型,又称为ARMA
(p,q)模型。其核心思想就是当前正如名字所显示的,整个模型的核心就是要确定p和q这两个参数。其中,p决定了我们要用几个滞后时期的价格数据,而q决定了我们要用几个滞后时期的预测误差。

在这里插入图片描述

简单来说,ARMA模型做了两件事。一是基于趋势理论,用历史数据来回归出一个当前的价格预测,这个预测反映了自回归的思想。但是这个预测必然是有差异的,所以ARMA模型根据历史的预测误差也回归出一个当前的误差预测,这个预测反映了加权平均的思想。用价格预测加上误差预测修正,才最终得到一个理论上更加精确的最终价格预测。

比起简单的自回归模型或者以时间为基础的简单趋势预测模型,ARMA模型最大的优势,在于综合了趋势理论和均值回归理论,理论上的精确度会比较高。

    '''自回归滑动平均模型'''from statsmodels.tsa.arima_model import ARMAfrom itertools import product​     ```
def myARMA(data):p = range(0, 9)q = range(0, 9)parameters = list(product(p, q))  # 生成(p,q)从(0,0)到(9,9)的枚举best_aic = float('inf')result = Nonefor param in parameters:try:model = ARMA(endog=data, order=(param[0], param[1])).fit()except ValueError:print("参数错误:", param)continueaic = model.aicif aic < best_aic:  # 选取最优的aicbest_aic = model.aicresult = (model, param)return result
```

K-means聚类算法

基本原理

k-Means算法是一种使用最普遍的聚类算法,它是一种无监督学习算法,目的是将相似的对象归到同一个簇中。簇内的对象越相似,聚类的效果就越好。该算法不适合处理离散型属性,但对于连续型属性具有较好的聚类效果。

聚类效果判定标准

使各个样本点与所在簇的质心的误差平方和达到最小,这是评价k-means算法最后聚类效果的评价标准。

在这里插入图片描述

算法实现步骤

1)选定k值

2)创建k个点作为k个簇的起始质心。

3)分别计算剩下的元素到k个簇的质心的距离,将这些元素分别划归到距离最小的簇。

4)根据聚类结果,重新计算k个簇各自的新的质心,即取簇中全部元素各自维度下的算术平均值。

5)将全部元素按照新的质心重新聚类。

6)重复第5步,直到聚类结果不再变化。

7)最后,输出聚类结果。

算法缺点

虽然K-Means算法原理简单,但是有自身的缺陷:

1)聚类的簇数k值需在聚类前给出,但在很多时候中k值的选定是十分难以估计的,很多情况我们聚类前并不清楚给出的数据集应当分成多少类才最恰当。

2)k-means需要人为地确定初始质心,不一样的初始质心可能会得出差别很大的聚类结果,无法保证k-means算法收敛于全局最优解。

3)对离群点敏感。

4)结果不稳定(受输入顺序影响)。

5)时间复杂度高O(nkt),其中n是对象总数,k是簇数,t是迭代次数。

算法实现关键问题说明

K值的选定说明

根据聚类原则:组内差距要小,组间差距要大。我们先算出不同k值下各个SSE(Sum of
squared
errors)值,然后绘制出折线图来比较,从中选定最优解。从图中,我们可以看出k值到达5以后,SSE变化趋于平缓,所以我们选定5作为k值。

在这里插入图片描述

初始的K个质心选定说明

初始的k个质心选定是采用的随机法。从各列数值最大值和最小值中间按正太分布随机选取k个质心。

关于离群点

离群点就是远离整体的,非常异常、非常特殊的数据点。因为k-
means算法对离群点十分敏感,所以在聚类之前应该将这些“极大”、“极小”之类的离群数据都去掉,否则会对于聚类的结果有影响。离群点的判定标准是根据前面数据可视化分析过程的散点图和箱线图进行判定。

4 部分核心代码

#include "kmeans.h"
#include "ui_kmeans.h"kmeans::kmeans(QWidget *parent) :QDialog(parent),ui(new Ui::kmeans)
{this->setWindowFlags(Qt::Dialog | Qt::WindowMinMaxButtonsHint | Qt::WindowCloseButtonHint);ui->setupUi(this);
}kmeans::~kmeans()
{delete ui;
}void kmeans::closeEvent(QCloseEvent *)
{end_flag=true;
}void kmeans::on_pushButton_clicked()
{end_flag=false;//读取数据QFile sharpe("sharpe.txt");sharpe.open(QIODevice::ReadOnly|QIODevice::Text);std::vector<std::array<double,2>> data;while(!sharpe.atEnd()){QStringList linels=QString(sharpe.readLine()).split(',');qreal mean=linels[3].toDouble();qreal sd=linels[4].toDouble();if(mean>-0.06&&mean<0.06&&sd<0.12)data.push_back({mean,sd});}std::random_shuffle(data.begin(),data.end());sharpe.close();//聚类ui->pushButton->setText("聚类中...");QApplication::processEvents();auto labels=std::get<1>(dkm::kmeans_lloyd(data,9));ui->pushButton->setText("开始");QApplication::processEvents();//作图QChart *chart = new QChart();//chart->setAnimationOptions(QChart::SeriesAnimations);//chart->legend()->setVisible(false);QList<QScatterSeries*> serieses;QList<QColor> colors{QColor(Qt::black),QColor(Qt::cyan),QColor(Qt::red),QColor(Qt::green),QColor(Qt::magenta),QColor(Qt::yellow),QColor(Qt::gray),QColor(Qt::blue),QColor("#A27E36")};for(int i=0;i<9;i++){QScatterSeries *temp = new QScatterSeries();temp->setName(QString::number(i));temp->setColor(colors[i]);temp->setMarkerSize(10.0);serieses.append(temp);chart->addSeries(temp);}chart->createDefaultAxes();/*v4
-------------------------------------------------------------Percentiles      Smallest1%     -.023384        -.359855%    -.0115851       -.349373
10%    -.0078976       -.325249       Obs             613,849
25%    -.0037067       -.324942       Sum of Wgt.     613,84950%     .0000567                      Mean           .0004866Largest       Std. Dev.      .0130231
75%     .0041332        1.28376
90%     .0091571        1.52169       Variance       .0001696
95%     .0132541        2.73128       Skewness       95.21884
99%     .0273964        4.56203       Kurtosis       28540.15v5
-------------------------------------------------------------Percentiles      Smallest1%     .0073016       4.68e-075%     .0112397       7.22e-07
10%     .0135353       7.84e-07       Obs             613,849
25%     .0180452       8.21e-07       Sum of Wgt.     613,84950%     .0248626                      Mean           .0282546Largest       Std. Dev.      .0213631
75%     .0343356         3.2273
90%     .0458472        3.32199       Variance       .0004564
95%     .0549695        4.61189       Skewness       68.11651
99%     .0837288        4.75981       Kurtosis       11569.69*/QValueAxis *axisX = qobject_cast<QValueAxis *>(chart->axes(Qt::Horizontal).at(0));axisX->setRange(-0.06,0.06);axisX->setTitleText("平均值");axisX->setLabelFormat("%.2f");QValueAxis *axisY = qobject_cast<QValueAxis *>(chart->axes(Qt::Vertical).at(0));axisY->setRange(0,0.12);axisY->setTitleText("标准差");axisY->setLabelFormat("%.2f");ui->widget->setRenderHint(QPainter::Antialiasing);ui->widget->setChart(chart);int i=0;auto labelsiter=labels.begin();for(auto &&point : data){if(end_flag)return;serieses[*labelsiter]->append(QPointF(point[0],point[1]));i++;labelsiter++;if(i%1000==0){QApplication::processEvents();}}
}void kmeans::on_pushButton_2_clicked()
{end_flag=true;
}

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/311582.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu20.04配置

新建用户 sudo adduser username给用户sudo权限 新创建的用户没有root权限&#xff0c;我们执行以下命令给用户sudo权限 sudo usermod -a -G adm username sudo usermod -a -G sudo username删除用户 删除用户及用户所有文件&#xff08;/home/username/路径下的所有文件&a…

C语言实验5:结构体

目录 一、实验要求 二、实验原理 1. 普通结构体 1.1 显示声明结构体变量 1.2 直接声明结构体变量 ​编辑 1.3 typedef在结构体中的作用 2. 结构体的嵌套 3. 结构体数组 4. 指向结构体的指针 4.1 静态分配 4.2 动态分配 三、实验内容 1. 学生数据库 代码 截图 …

【pandas_不重复项计数】

听说WPS没有非重复项计数的功能&#xff0c;而office需要添加到数据模型之后&#xff0c;才可以使用该功能。而用pandas&#xff0c;既可以对重复项计数&#xff0c;又可以对非重复项计数。 # 使用提醒: # 1. xbot包提供软件自动化、数据表格、Excel、日志、AI等功能 # 2. pack…

【NTN 卫星通信】Oneweb星座以及Oneweb与Starlink比较

1 什么是OneWeb OneWeb于2012年以WorldVu的名义成立&#xff0c;于2020年开始构建其星座。然而&#xff0c;对于这家英国公司来说&#xff0c;这是一个艰难的旅程&#xff0c;OneWeb于2020年3月宣布破产&#xff0c;并认为covid-19大流行是一个主要因素。OneWeb星座当时仅完成…

toto的2023年终总结

第一次写年终总结&#xff0c;其实顺带是把大学四年的学习都给总结了一下&#xff0c;称之为大学总结更为合适吧&#xff1f; 其实把年终总结发在CSDN上有些不适&#xff0c;之前一直想着搭一个自己的博客也因为种种事情一直没有完成&#xff0c; 索性发在这里了&#xff0c;作…

SpringBoot 请求参数

文章目录 一、简单参数实体参数数组集合参数日期参数Json参数路径参数 一、简单参数 原始方式 在原始的web程序中&#xff0c;获取请求参数&#xff0c;需要通过HttpServletRequest 对象手动获取。 SpringBoot方式 1.参数名与形参变量名相同&#xff0c;定义形参即可接收参数。…

负载均衡概述

负载均衡 负载均衡 建立在现有网络结构之上&#xff0c;它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。 四层负载均衡 vs 七层负载均衡 四层负载均衡&#xff08;目标地址和端口交换&#xff09;…

安装与部署Hadoop

一、前置安装准备1、机器2、java3、创建hadoop用户 二、安装Hadoop三、环境配置1、workers2、hadoop-env.sh3、core-site.xml4、hdfs-site.xml5、linux中Hadoop环境变量 四、启动hadoop五、验证 一、前置安装准备 1、机器 主机名ip服务node1192.168.233.100NameNode、DataNod…

基于知识图谱的智能辅助需求管理体系介绍

☞ ░ 前往老猿Python博客 ░ https://blog.csdn.net/LaoYuanPython 一、背景 需求处理各环节的各参与方人员存在变更&#xff0c;知识背景不同&#xff0c;导致需求提出、分析设计、测试、交付各环节容易出现考虑不完整&#xff0c;从而限制了整个研发过程的效率以及质量的提…

Python编程-面向对象基础与入门到实践一书的内容拓展

Python编程-面向对象基础与入门到实践一书的内容拓展 通过编程&#xff0c;模拟现实生活中的事物编程&#xff0c;叫做面向对象编程&#xff0c;此过程也叫做实例化编程 简单类的创建 class Test():def __init__ (self,id):self.id iddef print_id(self):print(self.id)这里建…

掌握这十几个Python库才是爬虫界的天花板,没有你搞不定的网站!实战案例:Python全网最强电影搜索工具,自动生成播放链接

掌握这十几个Python库才是爬虫界的天花板,没有你搞不定的网站!实战案例:Python全网最强电影搜索工具,自动生成播放链接。 用来爬虫的十几个Python库。只要正确选择适合自己的Python库才能真正提高爬虫效率,到达高效爬虫目的。 1.PyQuery from pyquery import PyQuery as …

阿里员工:本月收入489325元,开心过年

阿里员工&#xff1a;本月收入489325元&#xff0c;开心过年 近日&#xff0c;一名阿里员工在社交媒体上爆料自己的本月收入&#xff0c;竟然高达48.9万&#xff0c;真是让人目瞪口呆。 震惊之余&#xff0c;大家都很好奇这么高收入是怎么来的&#xff0c;再仔细看工资单&…