基于蜉蝣算法优化的Elman神经网络数据预测 - 附代码

基于蜉蝣算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于蜉蝣算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于蜉蝣优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用蜉蝣算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于蜉蝣优化的Elman网络

蜉蝣算法原理请参考:https://blog.csdn.net/u011835903/article/details/109253587

利用蜉蝣算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

蜉蝣参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 蜉蝣相关参数设定
%% 定义蜉蝣优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,蜉蝣-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/313134.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css原子化的框架Tailwindcss的使用教程(原始html和vue项目的安装与配置)

安装教程 中文官网教程 原始的HTML里面使用 新建文件夹npm init -y 初始化项目 安装相关依赖 npm install -D tailwindcss postcss-cli autoprefixer初始化两个文件 npx tailwindcss init -p根目录下新建src/style.css tailwind base; tailwind components; tailwind ut…

SpringBoot之入门使用

系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 SpringBoot之入门使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、Spring缺点分析…

[区间动态规划] 棋盘分割

题目描述 ​ 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n−1)次后,连同最后剩下的矩形棋盘共有 n 块矩形棋盘。(每次切割都只能沿…

Leetcode每日一题:1599.经营摩天轮的最大利润

前言:本题是一道逻辑细节题,考察阅读理解并转化为代码的能力,很多细节 题目描述: 你正在经营一座摩天轮,该摩天轮共有 4 个座舱 ,每个座舱 最多可以容纳 4 位游客 。你可以 逆时针 轮转座舱,但…

声明式导航传参详情

1 动态路由传参 路由规则path ->/article/:aid 导航链接 <router-link to"/article/1">查看第一篇文章</router-link> 组件获取参数: this.$route.params.aid 如果想要所有的值&#xff0c;就用this. $route. params 注意&#xff1a;这两个必须匹配…

STM32的在线升级(IAP)实现方法:BOOT+APP原理详解

0 工具准备 Keil uVision5 Cortex M3权威指南&#xff08;中文&#xff09; STM32参考手册 1 在线升级&#xff08;IAP&#xff09;设计思路 为了实现STM32的在线升级&#xff08;IAP&#xff09;功能&#xff0c;通常会将STM32的FLASH划分为BOOT和APP两个部分&#xff0c;BOO…

[每周一更]-(第46期):Linux下配置Java所需环境及Java架构选型

Linux下配置Java所需环境及Java架构选型 一、配置基础环境 1.配置tomcat 环境变量 wget https://dlcdn.apache.org/tomcat/tomcat-10/v10.1.8/src/apache-tomcat-10.1.8-src.tar.gz tar -zxvf apache-tomcat-10.1.8-src.tar.gz 在/etc/profile 末尾追加export CATALINA_HOME…

排序算法-选择插入排序

文章目录 排序算法-选择插入排序 排序算法-选择插入排序 /// <summary>/// 选择插入排序/// Krystal 2023-11-10 09:02:06 每一次找一个最小的放到正确的位置上/// 直接选择排序通过每一轮的比较&#xff0c;找到最大值和最小值&#xff0c;将最大值的节点和右边交换&…

【快速全面掌握 WAMPServer】10.HTTP2.0时代,让 WampServer 开启 SSL 吧!

网管小贾 / sysadm.cc 如今的互联网就是个看脸的时代&#xff0c;颜值似乎成了一切&#xff01; 不信&#xff1f;看看那些直播带货的就知道了&#xff0c;颜值与出货量绝对成正比&#xff01; 而相对于 HTTP 来说&#xff0c;HTTPS 绝对算得上是高颜值的帅哥&#xff0c;即安…

【STM32】SPI通信

1 SPI通信 SPI&#xff08;Serial Peripheral Interface&#xff0c;串行外设接口&#xff09;是由Motorola公司开发的一种通用数据总线 四根通信线&#xff1a;SCK&#xff08;Serial Clock&#xff0c;串行时钟&#xff09;、MOSI&#xff08;Master Output Slave Input&am…

使用anaconda创建爬虫spyder工程

1.由于每个工程使用的环境都可能不一样&#xff0c;因此一个好的习惯就是不同的工程都创建属于自己的环境&#xff0c;在anaconda中默认的环境是base&#xff0c;我们现在来创建一个名为spyder的环境&#xff0c;专门用于爬虫工程&#xff1a; //括号中名字&#xff0c;代表当…

初识大数据,一文掌握大数据必备知识文集(7)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…