pytorch04:网络模型创建

目录

  • 一、模型创建过程
    • 1.1 以LeNet网络为例
    • 1.2 LeNet结构
    • 1.3 nn.Module
  • 二、网络层容器(Containers)
    • 2.1 nn.Sequential
      • 2.1.1 常规方法实现
      • 2.1.2 OrderedDict方法实现
    • 2.2 nn.ModuleList
    • 2.3 nn.ModuleDict
    • 2.4 三种容器构建总结
  • 三、AlexNet网络构建

一、模型创建过程

在这里插入图片描述

1.1 以LeNet网络为例

在这里插入图片描述

网络代码如下:

class LeNet(nn.Module):def __init__(self, classes):super(LeNet, self).__init__()  # 调用父类方法,作用是调用nn.Module类的构造函数,# 确保LeNet类被正确地初始化,并继承了nn.Module 的所有属性和方法self.conv1 = nn.Conv2d(3, 6, 5) # 卷积层self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, classes)def forward(self, x):out = F.relu(self.conv1(x))out = F.max_pool2d(out, 2)out = F.relu(self.conv2(out))out = F.max_pool2d(out, 2)out = out.view(out.size(0), -1)out = F.relu(self.fc1(out))out = F.relu(self.fc2(out))out = self.fc3(out)return out

1.2 LeNet结构

在这里插入图片描述

LeNet:conv1–>pool1–>conv2–>pool2–>fc1–>fc2–>fc3
在这里插入图片描述

1.3 nn.Module

Module是nn模块中的功能,nn模块还有Parameter、functional等模块。
在这里插入图片描述
nn.Module主要有以下参数:
• parameters : 存储管理nn.Parameter类
• modules : 存储管理nn.Module类
• buffers:存储管理缓冲属性,如BN层中的running_mean

二、网络层容器(Containers)

在这里插入图片描述

2.1 nn.Sequential

nn.Sequential 是 nn.module的容器,也是最常用的容器,用于按顺序包装一组网络层
• 顺序性:各网络层之间严格按照顺序构建
• 自带forward():自带的forward里,通过for循环依次执行前向传播运算

2.1.1 常规方法实现

LeNet网络由两部分构成,中间的卷积池化特征提取部分(features),以及最后的分类部分(classifier)。
在这里插入图片描述
具体代码如下:

class LeNetSequential(nn.Module):def __init__(self, classes):super(LeNetSequential, self).__init__()self.features = nn.Sequential(  #特征提取部分nn.Conv2d(3, 6, 5),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, 5),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),)self.classifier = nn.Sequential(  #分类部分nn.Linear(16*5*5, 120),nn.ReLU(),nn.Linear(120, 84),nn.ReLU(),nn.Linear(84, classes),)def forward(self, x):x = self.features(x)x = x.view(x.size()[0], -1)x = self.classifier(x)return x

打印网络层:
在这里插入图片描述

2.1.2 OrderedDict方法实现

使用有序字典的方法构建Sequential
代码如下:

class LeNetSequentialOrderDict(nn.Module):def __init__(self, classes):super(LeNetSequentialOrderDict, self).__init__()self.features = nn.Sequential(OrderedDict({'conv1': nn.Conv2d(3, 6, 5),'relu1': nn.ReLU(inplace=True),'pool1': nn.MaxPool2d(kernel_size=2, stride=2),'conv2': nn.Conv2d(6, 16, 5),'relu2': nn.ReLU(inplace=True),'pool2': nn.MaxPool2d(kernel_size=2, stride=2),}))self.classifier = nn.Sequential(OrderedDict({'fc1': nn.Linear(16 * 5 * 5, 120),'relu3': nn.ReLU(),'fc2': nn.Linear(120, 84),'relu4': nn.ReLU(inplace=True),'fc3': nn.Linear(84, classes),}))def forward(self, x):x = self.features(x)x = x.view(x.size()[0], -1)x = self.classifier(x)return x

先看一下Sequential函数中init初始化的两种方法,当我们使用OrderedDict方法时,会进行判断,使用self.add_module(key, module)方法将字典中的key和value取出来添加到Sequential中。

class Sequential(Module):def __init__(self, *args):super().__init__()if len(args) == 1 and isinstance(args[0], OrderedDict):for key, module in args[0].items():self.add_module(key, module)else:for idx, module in enumerate(args):self.add_module(str(idx), module)

通过这种方法构建可以给每一网络层添加一个名称,网络输出结果如下:
在这里插入图片描述

2.2 nn.ModuleList

nn.ModuleList是 nn.module的容器,用于包装一组网络层,以迭代方式调用网络层
主要方法:
• append():在ModuleList后面添加网络层
• extend():拼接两个ModuleList
• insert():指定在ModuleList中位置插入网络层

使用列表生成式,通过一行代码就能构建20个网络层。
代码演示:

class ModuleList(nn.Module):def __init__(self):super(ModuleList, self).__init__()# 使用列表生成式构建20个全连接层,每个全连接层10个神经元的网络self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(20)])def forward(self, x):for i, linear in enumerate(self.linears):x = linear(x)return xnet = ModuleList()

2.3 nn.ModuleDict

nn.ModuleDict是 nn.module的容器,用于包装一组网络层,以索引方式调用网络层,可以用过参数的形式选取想要调用的网络层。
主要方法:
• clear():清空ModuleDict
• items():返回可迭代的键值对(key-value pairs)
• keys():返回字典的键(key)
• values():返回字典的值(value)
• pop():返回一对键值,并从字典中删除

代码展示,只选取conv和relu两个网络层:

class ModuleDict(nn.Module):def __init__(self):super(ModuleDict, self).__init__()self.choices = nn.ModuleDict({'conv': nn.Conv2d(10, 10, 3),'pool': nn.MaxPool2d(3)})# 激活函数self.activations = nn.ModuleDict({'relu': nn.ReLU(),'prelu': nn.PReLU()})def forward(self, x, choice, act):  # 传入两个参数 用来选择网络层x = self.choices[choice](x)x = self.activations[act](x)return x
net = ModuleDict()
fake_img = torch.randn((4, 10, 32, 32))
output = net(fake_img, 'conv', 'relu')  #只选取conv和relu两个网络层。
print(output)

2.4 三种容器构建总结

• nn.Sequential:顺序性,各网络层之间严格按顺序执行,常用于block构建
• nn.ModuleList:迭代性,常用于大量重复网构建,通过for循环实现重复构建
• nn.ModuleDict:索引性,常用于可选择的网络层

三、AlexNet网络构建

AlexNet:2012年以高出第二名10多个百分点的准确率获得ImageNet分类任务冠军,开创了卷积神经网络的新时代
AlexNet特点如下:

  1. 采用ReLU:替换饱和激活函数,减轻梯度消失
  2. 采用LRN(Local Response Normalization):对数据归一化,减轻梯度消失
  3. Dropout:提高全连接层的鲁棒性,增加网络的泛化能力
  4. Data Augmentation:TenCrop,色彩修改

网络结构图如下:
在这里插入图片描述
构建代码:

import torch.nn as nn
import torch
from torchsummary import summary
# 定义一个名为AlexNet的神经网络模型,继承自nn.Module基类
class AlexNet(nn.Module):# 构造函数,初始化网络的参数def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None:# 调用父类的构造函数super().__init__()# 定义神经网络的特征提取部分,包含多个卷积层和池化层self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),  # 输入通道3,输出通道64,卷积核大小11x11,步长4,填充2nn.ReLU(inplace=True),  # 使用ReLU激活函数,inplace=True表示原地操作,节省内存nn.MaxPool2d(kernel_size=3, stride=2),  # 最大池化层,核大小3x3,步长2nn.Conv2d(64, 192, kernel_size=5, padding=2),  # 输入通道64,输出通道192,卷积核大小5x5,填充2nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),)# 定义自适应平均池化层,将输入的任意大小的特征图池化为固定大小6x6self.avgpool = nn.AdaptiveAvgPool2d((6, 6))# 定义分类器部分,包含全连接层和Dropout层self.classifier = nn.Sequential(nn.Dropout(p=dropout),  # 使用Dropout进行正则化,随机丢弃一部分神经元以防止过拟合nn.Linear(256 * 6 * 6, 4096),  # 输入大小为256*6*6,输出大小为4096nn.ReLU(inplace=True),nn.Dropout(p=dropout),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),  # 最后的全连接层输出类别数)# 前向传播函数,定义数据在网络中的传播过程def forward(self, x: torch.Tensor) -> torch.Tensor:x = self.features(x)  # 特征提取x = self.avgpool(x)  # 平均池化x = torch.flatten(x, 1)  # 将特征图展平成一维向量x = self.classifier(x)  # 分类器return xif __name__ == '__main__':net = AlexNet().cuda()summary(net, (3, 256, 256))

打印出的网络结构图如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/318164.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【力扣100】39.组合总和

添加链接描述 class Solution:def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:def backtrack(path,target,res,index):if target0:res.append(path[:])returnif target<0:return for i in range(index,len(candidates)):if target&g…

Java虚拟机介绍

JVM是一种用于计算设备的规范&#xff0c;它是一个虚拟出来的计算机&#xff0c;是通过在实际的计算机上仿真模拟计算机的各个功能来实现的。Java语言的一个非常重要的特点就是与平台的无关性。而使用Java虚拟机是实现这一特点的关键。每个Java虚拟机都着一个清晰的任务&#x…

轻量级性能测试工具 wrk 如何使用?

项目设计之初或者是项目快要结束的时候&#xff0c;大佬就会问我们&#xff0c;这个服务性能测试的结果是什么&#xff0c;QPS 可以达到多少&#xff0c;RPS 又能达到多少&#xff1f;接口性能可以满足未来生产环境的实际情况吗&#xff1f;有没有自己测试过自己接口的吞吐量&a…

阿里云服务器云盘ESSD Entry、SSD、高效云盘性能测评

阿里云服务器系统盘或数据盘支持多种云盘类型&#xff0c;如高效云盘、ESSD Entry云盘、SSD云盘、ESSD云盘、ESSD PL-X云盘及ESSD AutoPL云盘等&#xff0c;阿里云百科aliyunbaike.com详细介绍不同云盘说明及单盘容量、最大/最小IOPS、最大/最小吞吐量、单路随机写平均时延等性…

三菱plc的点动控制循环(小灯闪烁,单控气缸循环)

以为前一段时间小编做了一个气缸定时循环的程序&#xff0c;根据程序有不足之处&#xff0c;所以小编写下这篇文章&#xff0c;将网络上的plc小灯控制进行总结&#xff01;如果对你有帮助&#xff0c;不要忘了点赞收藏&#xff01;如果有更加好的梯形图&#xff0c;欢迎评论&am…

Redis(一)

1、redis Redis是一个完全开源免费的高性能&#xff08;NOSQL&#xff09;的key-value数据库。它遵守BSD协议&#xff0c;使用ANSI C语言编写&#xff0c;并支持网络和持久化。Redis拥有极高的性能&#xff0c;每秒可以进行11万次的读取操作和8.1万次的写入操作。它支持丰富的数…

WEB:探索开源OFD.js技术应用

1、简述 OFD.js 是一个由开源社区维护的 JavaScript 库&#xff0c;专注于在浏览器中渲染和处理 OFD 文件。OFD 作为一种开放式的文档格式&#xff0c;被广泛应用于电子政务、电子合同等领域。OFD.js 的出现为开发者提供了一个强大的工具&#xff0c;使得在前端实现 OFD 文件的…

阿里云系统盘测评ESSD、SSD和高效云盘IOPS、吞吐量性能参数表

阿里云服务器系统盘或数据盘支持多种云盘类型&#xff0c;如高效云盘、ESSD Entry云盘、SSD云盘、ESSD云盘、ESSD PL-X云盘及ESSD AutoPL云盘等&#xff0c;阿里云百科aliyunbaike.com详细介绍不同云盘说明及单盘容量、最大/最小IOPS、最大/最小吞吐量、单路随机写平均时延等性…

用Audio2Face驱动UE - MetaHuman

新的一年咯&#xff0c;很久没发博客了&#xff0c;就发两篇最近的研究吧。 开始之前说句话&#xff0c;别轻易保存任何内容&#xff0c;尤其是程序员不要轻易Ctrl S 在UE中配置Audio2Face 先检查自身电脑配置看是否满足&#xff0c;按最小配置再带个UE可能会随时崩&#x…

【C++】HP-Socket(一): 下载、Linux上编译、Windows远程编译Linux版本

1、简介 国产、高性能、跨平台网络通信框架。 作者于2024-01-01更新了Release版本v5.9.4&#xff0c;辛苦了&#xff0c;向作者致敬&#xff01; 源码下载&#xff1a; https://gitee.com/mirrors/hp-socket https://github.com/ldcsaa/HP-Socket 2、编译 2.1 在Linux上编…

requests库中Session对象超时解决过程

引言 在使用Python进行网络请求时&#xff0c;requests库是一个非常常用的工具。它提供了Session对象来管理和持久化参数&#xff0c;例如cookies、headers等。但是&#xff0c;对于一些需要长时间运行的请求&#xff0c;我们需要设置超时时间来避免长时间等待或者无限期阻塞的…

实战环境搭建-进行虚拟机网络配置

下来进行虚拟机的网络设置,我们用NAT设置 首先关闭正在运行的虚拟机, 之后点击“编辑” 选择“虚拟网络编辑器” 点击“更改设置”,选择NAT模式,如下图: 将子网IP设置成你想要的IP地址,我设置的是192.168.0.0,点击“确定” 再次启动虚拟机。 因为给你们的是图形版的,…