死锁与读写锁

一、死锁 

        死锁(Deadlock)是在并发计算中的一种状态,其中两个或多个进程无法继续执行,因为每个进程都在等待另一个进程释放所占用的资源。这种情况通常发生在系统中的资源分配过程中,其中每个进程都占用一些资源,并且正在等待其他进程释放它们所占用的资源,从而导致所有进程都无法继续执行。 

死锁演示 1:  忘记释放锁及重复加锁
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>// 全局变量,所有的线程都共享这一份资源。
int tickets = 1000;// 创建一个互斥量
pthread_mutex_t mutex;void * sellticket(void * arg) {// 卖票while(1) {// 加锁pthread_mutex_lock(&mutex);pthread_mutex_lock(&mutex);if(tickets > 0) {usleep(6000);printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);tickets--;}else {// 解锁pthread_mutex_unlock(&mutex);break;}// 解锁pthread_mutex_unlock(&mutex);pthread_mutex_unlock(&mutex);}return NULL;
}int main() {// 初始化互斥量pthread_mutex_init(&mutex, NULL);// 创建3个子线程pthread_t tid1, tid2, tid3;pthread_create(&tid1, NULL, sellticket, NULL);pthread_create(&tid2, NULL, sellticket, NULL);pthread_create(&tid3, NULL, sellticket, NULL);// 回收子线程的资源,阻塞pthread_join(tid1, NULL);pthread_join(tid2, NULL);pthread_join(tid3, NULL);pthread_exit(NULL); // 退出主线程// 释放互斥量资源pthread_mutex_destroy(&mutex);return 0;
}
死锁演示 2:  两个进程争抢资源
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>// 创建2个互斥量
pthread_mutex_t mutex1, mutex2;void * workA(void * arg) {pthread_mutex_lock(&mutex1);sleep(1);pthread_mutex_lock(&mutex2);printf("workA....\n");pthread_mutex_unlock(&mutex2);pthread_mutex_unlock(&mutex1);return NULL;
}void * workB(void * arg) {pthread_mutex_lock(&mutex2);sleep(1);pthread_mutex_lock(&mutex1);printf("workB....\n");pthread_mutex_unlock(&mutex1);pthread_mutex_unlock(&mutex2);return NULL;
}int main() {// 初始化互斥量pthread_mutex_init(&mutex1, NULL);pthread_mutex_init(&mutex2, NULL);// 创建2个子线程pthread_t tid1, tid2;pthread_create(&tid1, NULL, workA, NULL);pthread_create(&tid2, NULL, workB, NULL);// 回收子线程资源pthread_join(tid1, NULL);pthread_join(tid2, NULL);// 释放互斥量资源pthread_mutex_destroy(&mutex1);pthread_mutex_destroy(&mutex2);return 0;
}

二 、 读写锁

        当有一个线程已经持有互斥锁时,互斥锁将所有试图进入临界区的线程都阻塞住。但是考
虑一种情形,当前持有互斥锁的线程只是要读访问共享资源,而同时有其它几个线程也想
读取这个共享资源,但是由于互斥锁的排它性,所有其它线程都无法获取锁,也就无法读
访问共享资源了,但是实际上多个线程同时读访问共享资源并不会导致问题。
        ◼ 在对数据的读写操作中,更多的是读操作,写操作较少,例如对数据库数据的读写应用。
为了满足当前能够允许多个读出,但只允许一个写入的需求,线程提供了读写锁来实现。
        ◼ 读写锁的特点:
                 如果有其它线程读数据,则允许其它线程执行读操作,但不允许写操作。
                 如果有其它线程写数据,则其它线程都不允许读、写操作。
                 写是独占的,写的优先级高。

/*读写锁的类型 pthread_rwlock_tint pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);案例:8个线程操作同一个全局变量。3个线程不定时写这个全局变量,5个线程不定时的读这个全局变量
*/#include <stdio.h>
#include <pthread.h>
#include <unistd.h>// 创建一个共享数据
int num = 1;
// pthread_mutex_t mutex;
pthread_rwlock_t rwlock;void * writeNum(void * arg) {while(1) {pthread_rwlock_wrlock(&rwlock);num++;printf("++write, tid : %ld, num : %d\n", pthread_self(), num);pthread_rwlock_unlock(&rwlock);usleep(100);}return NULL;
}void * readNum(void * arg) {while(1) {pthread_rwlock_rdlock(&rwlock);printf("===read, tid : %ld, num : %d\n", pthread_self(), num);pthread_rwlock_unlock(&rwlock);usleep(100);}return NULL;
}int main() {pthread_rwlock_init(&rwlock, NULL);// 创建3个写线程,5个读线程pthread_t wtids[3], rtids[5];for(int i = 0; i < 3; i++) {pthread_create(&wtids[i], NULL, writeNum, NULL);}for(int i = 0; i < 5; i++) {pthread_create(&rtids[i], NULL, readNum, NULL);}// 设置线程分离for(int i = 0; i < 3; i++) {pthread_detach(wtids[i]);}for(int i = 0; i < 5; i++) {pthread_detach(rtids[i]);}pthread_exit(NULL);pthread_rwlock_destroy(&rwlock);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/327583.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

揭秘大模型「幻觉」:数据偏差、泛化与上下文理解的挑战与解决之道

什么是大模型「幻觉」 所谓的「幻觉」指的是当大模型生成与现实不符或逻辑上不连贯的信息时。这通常发生在模型对某些数据理解不足或数据本身存在偏差的情况下。由于模型是基于概率统计和以往数据训练的,它们可能在面对未知或少见情况时产生不准确的推断。 大模型不具有本地知…

docker - 常用容器部署命令大全(MySQL、Redis、RabbitMQ、ES、Kibana、Nacos、Sentinel)

目录 一、常用容器运行指令 MySQL Redis RabbitMQ ElasticSearch & kibana Nacos Sentinel 一、常用容器运行指令 MySQL docker run -d --name mysql -p 3306:3306 -e TZAsia/Shanghai -e MYSQL_ROOT_PASSWORD1111 mysql:5.7 -e TZAsia/Shanghai&#xff1a;指定…

BMTrain来高效训练预训练模型-大模型的福音

一.背景知识 在2018年&#xff0c;预训练语言模型技术的出现成为人工智能领域一场革命性的变革。研究表明&#xff0c;通过增加模型参数量和训练数据规模&#xff0c;可以有效提升语言模型的性能&#xff0c;因此十亿、百亿甚至千亿级大模型的探索成为业界的热门话题。这一趋势…

LLM Agent之数据分析领域的应用

数据分析&#xff1a;Data-Copilot paper: Data-Copilot: Bridging Billions of Data and Humans with Autonomous Workflow github: https://github.com/zwq2018/Data-Copilot 先介绍下浙大提出的已扩展的数据分析框架&#xff0c;支持多种金融数据类型的查询&#xff0c;数…

HIL(硬件在环)技术汇总梳理

HIL&#xff08;Hardware-in-the-Loop&#xff09;测试领域的知名公司有dSPACE、NI、Vector和speedgoat等&#xff0c;以下是针对这几家HIL技术的对比分析&#xff1a; 文章目录 dSPACE NI Vector speedgoat 总结 dSPACE dSPACE成立于1988年&#xff0c;起源自德国的帕德…

使用pagehelper插件进行分页查询

一、导入mybatis和pagehelper坐标 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.2.0</version> </dependency> <dependency><groupId&…

Mysql为什么只能支持2000w左右的数据量?

首先说明一下&#xff1a; MySQL并没有硬性规定只能支持到2000万左右的数据量。 其实&#xff0c;MySQL能够处理的数据量远远超过这个数字。无论是开源社区版还是商业版&#xff0c; MySQL在适当的硬件和配置下&#xff0c;都能够支持非常大的数据集。 通常所说的“MySQL只能…

Archlinux下自启动rclone mount

路径&#xff1a; /etc/systemd/system/rclonemount.service [Unit] Descriptionrclonemount Requiresnetwork-online.target.wants Afteralist.service[Service] Typesimple ExecStartPre/bin/mkdir -p /media ExecStart/usr/bin/rclone mount \aliyun: /media \--config /ro…

解决Canvas画图清晰度问题

最近在开发Web端远程桌面的时候遇到的一个问题&#xff0c;解决记录一下&#xff0c;分享给各位有需要用到的朋友。 先吹下水&#xff1a;远程桌面的连接我们是通过Websocket连接后&#xff0c;后端不断返回远程端的界面二进制数据流&#xff0c;我接收到之后转为图像&#xf…

GLTF编辑器设置3D纺织纹理贴图

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 位移贴图是一种纹理映射技术&#xff0c;通过改变顶点的位置来模拟细…

算法第十二天-矩形区域不超过K的最大数值和

矩形区域不超过K的最大数值和 题目要求 解题思路 来自[宫水三叶] 从题面来看显然是一道[二维前缀和]的题目。本题预处理前缀和的复杂度为O(m* n) 搜索所有子矩阵需要枚举[矩形左上角]和[矩形右下角]&#xff0c;复杂度是 O ( m 2 ∗ n 2 ) O(m^2 * n^2) O(m2∗n2)&#xff0c…

看到这个数据库设计,我终于明白了我和其他软测人的差距

看到这个数据库设计&#xff0c;我终于明白了我和其他软测人的差距&#xff01;&#xff01;&#xff01; 前言 01 测试人员为什么要懂数据库设计&#xff1f; 更精准的掌握业务&#xff0c;针对接口测试、Web 测试&#xff0c;都是依照项目/产品需求进行用例设计&#xff0c;如…