NOIP2012提高组day1-T3:开车旅行

题目链接

[NOIP2012 提高组] 开车旅行

题目描述

A \text{A} A 和小 B \text{B} B 决定利用假期外出旅行,他们将想去的城市从 1 1 1 n n n 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i i i 的海拔高度为 h i h_i hi,城市 i i i 和城市 j j j 之间的距离 d i , j d_{i,j} di,j 恰好是这两个城市海拔高度之差的绝对值,即 d i , j = ∣ h i − h j ∣ d_{i,j}=|h_i-h_j| di,j=hihj

旅行过程中,小 A \text{A} A 和小 B \text{B} B 轮流开车,第一天小 A \text{A} A 开车,之后每天轮换一次。他们计划选择一个城市 s s s 作为起点,一直向东行驶,并且最多行驶 x x x 公里就结束旅行。

A \text{A} A 和小 B \text{B} B 的驾驶风格不同,小 B \text{B} B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A \text{A} A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 x x x 公里,他们就会结束旅行。

在启程之前,小 A \text{A} A 想知道两个问题:

1、 对于一个给定的 x = x 0 x=x_0 x=x0,从哪一个城市出发,小 A \text{A} A 开车行驶的路程总数与小 B \text{B} B 行驶的路程总数的比值最小(如果小 B \text{B} B 的行驶路程为 0 0 0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A \text{A} A 开车行驶的路程总数与小 B \text{B} B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。

2、对任意给定的 x = x i x=x_i x=xi 和出发城市 s i s_i si,小 A \text{A} A 开车行驶的路程总数以及小 B \text B B 行驶的路程总数。

输入格式

第一行包含一个整数 n n n,表示城市的数目。

第二行有 n n n 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 1 1 到城市 n n n 的海拔高度,即 h 1 , h 2 . . . h n h_1,h_2 ... h_n h1,h2...hn,且每个 h i h_i hi 都是互不相同的。

第三行包含一个整数 x 0 x_0 x0

第四行为一个整数 m m m,表示给定 m m m s i s_i si x i x_i xi

接下来的 m m m 行,每行包含 2 2 2 个整数 s i s_i si x i x_i xi,表示从城市 s i s_i si 出发,最多行驶 x i x_i xi 公里。

输出格式

输出共 m + 1 m+1 m+1 行。

第一行包含一个整数 s 0 s_0 s0,表示对于给定的 x 0 x_0 x0,从编号为 s 0 s_0 s0 的城市出发,小 A \text A A 开车行驶的路程总数与小 B \text B B 行驶的路程总数的比值最小。

接下来的 m m m 行,每行包含 2 2 2 个整数,之间用一个空格隔开,依次表示在给定的 s i s_i si x i x_i xi 下小 A \text A A 行驶的里程总数和小 B \text B B 行驶的里程总数。

样例 #1

样例输入 #1

4 
2 3 1 4 
3 
4 
1 3 
2 3 
3 3 
4 3

样例输出 #1

1 
1 1 
2 0 
0 0 
0 0

样例 #2

样例输入 #2

10 
4 5 6 1 2 3 7 8 9 10 
7 
10 
1 7 
2 7 
3 7 
4 7 
5 7 
6 7 
7 7 
8 7 
9 7 
10 7

样例输出 #2

2 
3 2 
2 4 
2 1 
2 4 
5 1 
5 1 
2 1 
2 0 
0 0 
0 0

提示

【样例1说明】

各个城市的海拔高度以及两个城市间的距离如上图所示。

如果从城市 1 1 1 出发,可以到达的城市为 2 , 3 , 4 2,3,4 2,3,4,这几个城市与城市 1 1 1 的距离分别为 1 , 1 , 2 1,1,2 1,1,2,但是由于城市 3 3 3 的海拔高度低于城市 2 2 2,所以我们认为城市 3 3 3 离城市 1 1 1 最近,城市 2 2 2 离城市 1 1 1 第二近,所以小A会走到城市 2 2 2。到达城市 2 2 2 后,前面可以到达的城市为 3 , 4 3,4 3,4,这两个城市与城市 2 2 2 的距离分别为 2 , 1 2,1 2,1,所以城市 4 4 4 离城市 2 2 2 最近,因此小B会走到城市 4 4 4。到达城市 4 4 4 后,前面已没有可到达的城市,所以旅行结束。

如果从城市 2 2 2 出发,可以到达的城市为 3 , 4 3,4 3,4,这两个城市与城市 2 2 2 的距离分别为 2 , 1 2,1 2,1,由于城市 3 3 3 离城市 2 2 2 第二近,所以小 A \text A A 会走到城市 3 3 3。到达城市 3 3 3 后,前面尚未旅行的城市为 4 4 4,所以城市 4 4 4 离城市 3 3 3 最近,但是如果要到达城市 4 4 4,则总路程为 2 + 3 = 5 > 3 2+3=5>3 2+3=5>3,所以小 B \text B B 会直接在城市 3 3 3 结束旅行。

如果从城市 3 3 3 出发,可以到达的城市为 4 4 4,由于没有离城市 3 3 3 第二近的城市,因此旅行还未开始就结束了。

如果从城市 4 4 4 出发,没有可以到达的城市,因此旅行还未开始就结束了。

【样例2说明】

x = 7 x=7 x=7 时,如果从城市 1 1 1 出发,则路线为 1 → 2 → 3 → 8 → 9 1 \to 2 \to 3 \to 8 \to 9 12389,小 A \text A A 走的距离为 1 + 2 = 3 1+2=3 1+2=3,小 B \text B B 走的距离为 1 + 1 = 2 1+1=2 1+1=2。(在城市 1 1 1 时,距离小 A \text A A 最近的城市是 2 2 2 6 6 6,但是城市 2 2 2 的海拔更高,视为与城市 1 1 1 第二近的城市,所以小 A \text A A 最终选择城市 2 2 2;走到 9 9 9 后,小 A \text A A 只有城市 10 10 10 可以走,没有第二选择可以选,所以没法做出选择,结束旅行)

如果从城市 2 2 2 出发,则路线为 2 → 6 → 7 2 \to 6 \to 7 267,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 4 2,4 2,4

如果从城市 3 3 3 出发,则路线为 3 → 8 → 9 3 \to 8 \to 9 389,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 1 2,1 2,1

如果从城市 4 4 4 出发,则路线为 4 → 6 → 7 4 \to 6 \to 7 467,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 4 2,4 2,4

如果从城市 5 5 5 出发,则路线为 5 → 7 → 8 5 \to 7 \to 8 578,小 A \text A A 和小 B \text B B 走的距离分别为 5 , 1 5,1 5,1

如果从城市 6 6 6 出发,则路线为 6 → 8 → 9 6 \to 8 \to 9 689,小 A \text A A 和小 B \text B B 走的距离分别为 5 , 1 5,1 5,1

如果从城市 7 7 7 出发,则路线为 7 → 9 → 10 7 \to 9 \to 10 7910,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 1 2,1 2,1

如果从城市 8 8 8 出发,则路线为 8 → 10 8 \to 10 810,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 0 2,0 2,0

如果从城市 9 9 9 出发,则路线为 9 9 9,小 A \text A A 和小 B \text B B 走的距离分别为 0 , 0 0,0 0,0(旅行一开始就结束了)。

如果从城市 10 10 10 出发,则路线为 10 10 10,小 A \text A A 和小 B \text B B 走的距离分别为 0 , 0 0,0 0,0

从城市 2 2 2 或者城市 4 4 4 出发小 A \text A A 行驶的路程总数与小 B \text B B 行驶的路程总数的比值都最小,但是城市 2 2 2 的海拔更高,所以输出第一行为 2 2 2

【数据范围与约定】

对于 30 % 30\% 30% 的数据,有 1 ≤ n ≤ 20 , 1 ≤ m ≤ 20 1\le n \le 20,1\le m\le 20 1n20,1m20
对于 40 % 40\% 40% 的数据,有 1 ≤ n ≤ 100 , 1 ≤ m ≤ 100 1\le n \le 100,1\le m\le 100 1n100,1m100
对于 50 % 50\% 50% 的数据,有 1 ≤ n ≤ 100 , 1 ≤ m ≤ 1000 1\le n \le 100,1\le m\le 1000 1n100,1m1000
对于 70 % 70\% 70% 的数据,有 1 ≤ n ≤ 1000 , 1 ≤ m ≤ 1 0 4 1\le n \le 1000,1\le m\le 10^4 1n1000,1m104
对于 100 % 100\% 100% 的数据: 1 ≤ n , m ≤ 1 0 5 1\le n,m \le 10^5 1n,m105 − 1 0 9 ≤ h i ≤ 1 0 9 -10^9 \le h_i≤10^9 109hi109 1 ≤ s i ≤ n 1 \le s_i \le n 1sin 0 ≤ x i ≤ 1 0 9 0 \le x_i \le 10^9 0xi109
数据保证 h i h_i hi 互不相同。

算法思想

根据题目描述,本题要求的是选择一个城市 s s s 作为起点,一直向东行驶,并且最多行驶 x x x 公里就结束旅行时,小 A \text{A} A 开车行驶的路程总数以及小 B \text B B 行驶的路程总数。

由于小 A \text{A} A和小 B \text{B} B一直向东行驶,并且最多行驶 x x x 公里就结束旅行,可以使用倍增法统计出小 A \text{A} A 和小 B \text B B 开车行驶的路程总数 l a la la l b lb lb

状态表示

  • d a ( 0 , s , i ) da(0,s,i) da(0,s,i)表示从城市 s s s出发,小 A \text{A} A先走,两人轮流行驶了 2 i 2^i 2i次,小 A \text{A} A行驶的总距离。
  • d a ( 1 , s , i ) da(1,s,i) da(1,s,i)表示从城市 s s s出发,小 B \text{B} B先走,两人轮流行驶了 2 i 2^i 2i次,小 A \text{A} A行驶的总距离。
  • d b ( 0 , s , i ) db(0,s,i) db(0,s,i)表示从城市 s s s出发,小 A \text{A} A先走,两人轮流行驶了 2 i 2^i 2i次,小 B \text{B} B行驶的总距离。
  • d b ( 1 , s , i ) db(1,s,i) db(1,s,i)表示从城市 s s s出发,小 B \text{B} B先走,两人轮流行驶了 2 i 2^i 2i次,小 B \text{B} B行驶的总距离。

有了上述状态,如何求从 s s s 出发,最多行驶 x x x 公里时的 l a la la l b lb lb呢?不妨设两人轮流行驶了 k k k次,以二进制的方式分析,假设 k = ( 011010010 ) 2 k=(011010010)_2 k=(011010010)2,那么
l a = d a ( 0 , s , 7 ) + d a ( 0 , s 1 , 6 ) + d a ( 0 , s 2 , 4 ) + d a ( 0 , s 3 , 1 ) l b = d b ( 0 , s , 7 ) + d b ( 0 , s 1 , 6 ) + d b ( 0 , s 2 , 4 ) + d b ( 0 , s 3 , 1 ) la = da(0,s,7)+da(0,s_1,6)+da(0,s_2,4)+da(0,s_3,1)\\ lb = db(0,s,7)+db(0,s_1,6)+db(0,s_2,4)+db(0,s_3,1) la=da(0,s,7)+da(0,s1,6)+da(0,s2,4)+da(0,s3,1)lb=db(0,s,7)+db(0,s1,6)+db(0,s2,4)+db(0,s3,1)

其中 s 1 , s 2 , s 3 . . . s_1,s_2,s_3... s1,s2,s3...为中间经过的城市。要求解中间经过的城市,还需要预处理

  • f ( 0 , s , i ) f(0,s,i) f(0,s,i)表示从城市 s s s出发,小 A \text{A} A先走,两人轮流行驶了 2 i 2^i 2i次到达的城市编号
  • f ( 1 , s , i ) f(1,s,i) f(1,s,i)表示从城市 s s s出发,小 B \text{B} B先走,两人轮流行驶了 2 i 2^i 2i次到达的城市编号

由于题目要求,小 A \text{A} A和小 B \text{B} B的驾驶风格不同。因此,还需要预处理出:

  • g a ( i ) ga(i) ga(i)表示小 A \text{A} A从城市 s s s出发能够到达的城市编号
  • g b ( i ) gb(i) gb(i)表示小 B \text{B} B从城市 s s s出发能够到达的城市编号

下面再来考虑一些如何计算上述状态

状态计算

1、 先来看一下如何计算 g a ga ga g b gb gb

  • 由于小 A \text{A} A总是沿着前进方向选择第二近的城市作为目的地,那么就是求城市 s s s右边和它的海拔高度之差第 2 2 2小的城市
  • B \text{B} B 总是沿着前进方向选择一个最近的城市作为目的地,那么就是求城市 s s s右边和它的海拔高度之差最小的城市

即在 s s s右侧的城市中,查找与 s s s高度之差的绝对值最小的两个城市,其原理类似于博主的这篇文章——邻值查找。

为了快速查找目标,可以使用set作为容器,从后向前遍历每个城市:

  • 查找第 1 1 1个高度大于 h [ s ] h[s] h[s]的城市和第 2 2 2个高度大于 h [ s ] h[s] h[s]的城市
  • 查找第 1 1 1个高度小于 h [ s ] h[s] h[s]的城市和第 2 2 2个高度小于 h [ s ] h[s] h[s]的城市
  • 那么,目标就在这 4 4 4个城市之间,如下图所示。
  • 再将城市 s s s插入到set中。
    在这里插入图片描述

2、再看如何计算 f ( 0 , s , i ) f(0,s,i) f(0,s,i) f ( 0 , s , i ) f(0,s,i) f(0,s,i)

  • i = 0 i=0 i=0时,表示从 s s s出发行驶 1 1 1次,那么 f ( 0 , s , 0 ) = g a ( s ) f(0,s,0) = ga(s) f(0,s,0)=ga(s) f ( 1 , s , 0 ) = g b ( s ) f(1,s,0) = gb(s) f(1,s,0)=gb(s)
  • i = 1 i=1 i=1时,表示从 s s s出发行驶 2 2 2
    • 1 1 1次小 A \text{A} A先驾驶从 s s s行驶到 f ( 0 , s , 0 ) f(0,s,0) f(0,s,0)
    • 2 2 2次换小 B \text{B} B驾驶从 f ( 0 , s , 0 ) f(0,s,0) f(0,s,0)行驶到了 f ( 1 , f ( 0 , s , 0 ) , 0 ) f(1,f(0,s,0),0) f(1,f(0,s,0),0)
    • k k k表示由谁先驾驶, k = 0 k=0 k=0表示小 A \text{A} A先驾驶, k = 1 k=1 k=1表示小 B \text{B} B先驾驶,那么 f ( k , s , 1 ) = f ( 1 − k , f ( k , s , 0 ) , 0 ) f(k,s,1)=f(1-k,f(k,s,0),0) f(k,s,1)=f(1k,f(k,s,0),0)
  • i > 1 i>1 i>1时,表示从 s s s出发行驶 2 i 2^i 2i次,也可以分成两部分
    • 第一部分, 小 A \text{A} A先驾驶从 s s s行驶到 f ( 0 , s , i − 1 ) f(0,s,i-1) f(0,s,i1)
    • 第二部分,由于 i > 1 i>1 i>1 2 i − 1 2^{i-1} 2i1是偶数,不换人,还有由小 A \text{A} A先驾驶从 f ( 0 , s , i − 1 ) f(0,s,i-1) f(0,s,i1),行驶到 f ( 0 , f ( 0 , s , i − 1 ) , i − 1 ) f(0,f(0,s,i-1),i-1) f(0,f(0,s,i1),i1)
    • f ( k , s , i ) = f ( k , f ( k , s , i − 1 ) , i − 1 ) f(k,s,i)=f(k,f(k,s,i-1),i-1) f(k,s,i)=f(k,f(k,s,i1),i1)

3、最后再计算 d a da da d b db db

  • i = 0 i=0 i=0时,即行驶 1 1 1

    • d a ( 0 , s , 0 ) da(0,s,0) da(0,s,0)表示小 A \text{A} A先走,行驶 1 1 1次,会从城市 s s s到达 g a ( s ) ga(s) ga(s),那么 d a ( 0 , s , 0 ) = d i s t ( s , g a ( s ) ) da(0,s,0)=dist(s, ga(s)) da(0,s,0)=dist(s,ga(s)),即这两个城市海拔高度之差的绝对值;如果小 B \text{B} B先走,那么小 A \text{A} A行驶的距离为 0 0 0,即 d a ( 1 , s , 0 ) = 0 da(1,s,0)=0 da(1,s,0)=0
    • 同理, d b ( 1 , s , 0 ) = d i s t ( s , g b ( s ) ) db(1,s,0)=dist(s, gb(s)) db(1,s,0)=dist(s,gb(s)) d b ( 0 , s , 0 ) = 0 db(0,s,0)=0 db(0,s,0)=0
  • i = 1 i=1 i=1时,即行驶 2 2 2次,可以分成两部分,不妨用 k k k表示谁先行驶, k = { 0 , 1 } k=\{0,1\} k={0,1}

    • 第一部分从 s s s出发,行驶 1 1 1次,走到 f ( k , s , 0 ) f(k,s,0) f(k,s,0),小 A \text{A} A行驶的距离 d a ( k , s , 0 ) da(k,s,0) da(k,s,0)
      B \text{B} B行驶的距离为 d b ( k , s , 0 ) db(k,s,0) db(k,s,0)
    • 第二部分从 f ( k , s , 0 ) f(k,s,0) f(k,s,0)出发,换人行驶 1 1 1次,小 A \text{A} A行驶的距离 d a ( 1 − k , f ( k , s , 0 ) , 0 ) da(1-k,f(k,s,0),0) da(1k,f(k,s,0),0)
      B \text{B} B行驶的距离为 d b ( k , f ( k , s , 0 ) , 0 ) db(k,f(k,s,0),0) db(k,f(k,s,0),0)
    • 那么, d a ( k , s , 1 ) = d a ( k , s , 0 ) + d a ( 1 − k , f ( k , s , 0 ) , 0 ) da(k,s,1)=da(k,s,0)+da(1-k,f(k,s,0),0) da(k,s,1)=da(k,s,0)+da(1k,f(k,s,0),0) d b ( k , s , 1 ) = d b ( k , s , 0 ) + d b ( 1 − k , f ( k , s , 0 ) , 0 ) db(k,s,1)=db(k,s,0)+db(1-k,f(k,s,0),0) db(k,s,1)=db(k,s,0)+db(1k,f(k,s,0),0)
  • i > 1 i>1 i>1时,即行驶 2 i 2^i 2i次,也可以分成两部分, k k k表示谁先行驶, k = { 0 , 1 } k=\{0,1\} k={0,1}

    • d a ( k , s , i ) = d a ( k , s , i − 1 ) + d a ( k , f ( k , s , i − 1 ) , i − 1 ) da(k,s,i)=da(k,s,i-1)+da(k,f(k,s,i-1),i-1) da(k,s,i)=da(k,s,i1)+da(k,f(k,s,i1),i1)
    • d b ( k , s , i ) = d b ( k , s , i − 1 ) + d b ( 1 − k , f ( k , s , i − 1 ) , i − 1 ) db(k,s,i)=db(k,s,i-1)+db(1-k,f(k,s,i-1),i-1) db(k,s,i)=db(k,s,i1)+db(1k,f(k,s,i1),i1)

如下图所示
在这里插入图片描述

时间复杂度

  • 预处理 g a , g b ga,gb ga,gb需要从后向前遍历每个城市 s s s,查找与 s s s高度之差的绝对值最小的两个城市,使用set容器查找的时间复杂度为 O ( l o g n ) O(logn) O(logn),总的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)
  • 通过倍增法预处理 f f f的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)
  • 通过倍增法预处理 d a , d b da,db da,db的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)
  • 第一问求对于给定的 x x x,从哪个城市出发,小 A \text A A 开车行驶的路程总数与小 B \text B B 行驶的路程总数的比值最小,需要枚举每个城市作为起点,求 l a la la l b lb lb,时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)
  • 第二问一共有 m m m个询问,求在给定的 s s s x x x 情况下求小 A \text A A 行驶的里程总数和小 B \text B B 行驶的里程总数,时间复杂度为 O ( m l o g n ) O(mlogn) O(mlogn)

总的时间复杂度为 O ( n l o g n ) = 1 0 5 × 17 O(nlogn)=10^5\times17 O(nlogn)=105×17

代码实现

#include <iostream>
#include <set>
using namespace std;
typedef long long LL;
typedef pair<LL, int> PLI;
const int N = 1e5 + 10, M = 17;
const LL INF = 1e18; 
int n, h[N];
int ga[N], gb[N]; //ga[i]表示小A从i出发能到达的城市
int f[2][N][M]; //f[0][s][i]表示从s出发,小A先走,轮流行驶2^i时到达的城市编号
int da[2][N][M], db[2][N][M];
void init_g()
{set<PLI> S;//防止查找越界,插入4个边界S.insert({-INF, 0}), S.insert({-INF + 1, 0});S.insert({INF, 0}), S.insert({INF + 1, 0});PLI b[4]; //被选城市//从后向前遍历城市,查找右侧第一个大于h[i]的位置for(int i = n; i >= 0; i --){PLI t(h[i], i);auto it = S.upper_bound(t);it ++; //移动到右侧第二个大于h[i]的位置for(int k = 0; k < 4; k ++) b[k] = *it --;//从备选的4个备选城市中查找差值第1小和第2小的城市LL d1 = INF, d2 = INF;int p1, p2;for(int k = 3; k >= 0; k --){LL d = abs(h[i] - b[k].first);if(d < d1) {d2 = d1, d1 = d;p2 = p1, p1 = b[k].second; }else if(d < d2) {d2 = d, p2 = b[k].second;}}//小A选择第二近的城市作为目的地,小B选择一个最近的城市作为目的地,ga[i] = p2, gb[i] = p1;S.insert(t);}
}
void init_f()
{//初始状态,从每个城市出发行驶1次能到达的城市for(int s = 1; s <= n; s ++) {f[0][s][0] = ga[s], f[1][s][0] = gb[s];}//状态计算for(int i = 1; i < M; i ++)for(int s = 1; s <= n; s ++)for(int k = 0; k < 2; k ++){if(i == 1) //行驶2次f[k][s][i] = f[1 - k][f[k][s][0]][0];else //行驶2^if[k][s][i] = f[k][f[k][s][i - 1]][i - 1];}
}
//获取两个城市之间的距离
int get_dis(int a, int b)
{return abs(h[a] - h[b]);
}
void init_d()
{//初始状态,计算从每个城市出发行驶1次能够走的额距离for(int s = 1; s <= n; s ++){da[0][s][0] = get_dis(s, ga[s]);db[1][s][0] = get_dis(s, gb[s]);}//状态计算for(int i = 1; i < M; i ++)for(int s = 1; s <= n; s ++)for(int k = 0; k < 2; k ++){if(i == 1) //行驶2次{da[k][s][i] = da[k][s][i - 1] + da[1 - k][f[k][s][i - 1]][i - 1];db[k][s][i] = db[k][s][i - 1] + db[1 - k][f[k][s][i - 1]][i - 1];}else //行驶2^i次{da[k][s][i] = da[k][s][i - 1] + da[k][f[k][s][i - 1]][i - 1];db[k][s][i] = db[k][s][i - 1] + db[k][f[k][s][i - 1]][i - 1];}}
}
//计算从城市s出发,行驶总距离不超过s时,小A和小B各自走的总距离
void work(int s, int x, int &la, int &lb)
{la = lb = 0;//枚举行驶次数for(int i = M - 1; i >= 0; i --){//如果能够到达城市,并且总距离不超过xif(f[0][s][i] && la + lb + da[0][s][i] + db[0][s][i] <= x){la += da[0][s][i], lb += db[0][s][i];s = f[0][s][i];//行驶到新的城市s}}
}
int main()
{scanf("%d", &n);for(int i = 1; i <= n; i ++) scanf("%d", &h[i]);//预处理状态init_g();init_f();init_d();//第一问int x;scanf("%d", &x);int ans = 0, max_h = 0;double min_r = INF;for(int s = 1; s <= n; s ++){int la, lb;work(s, x, la, lb);double r = lb == 0 ? INF : (double) la / lb;//取最小比值,比值相同取海拔更高的城市if(r < min_r || r == min_r && h[s] > max_h){min_r = r, max_h = h[s], ans = s;}}printf("%d\n", ans);//第二问int m;scanf("%d", &m);while (m -- ){int s, x, la, lb;scanf("%d%d", &s, &x);work(s, x, la, lb);printf("%d %d\n", la, lb);}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/337088.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Superset二次开发之环境准备-Nodejs

一、下载安装Nodejs ① 打开nodejs官网 Node.js 击下载LTS版本. 不建议下载最新版,会有版本冲突.可以先查看一下所有版本 Previous Releases | Node.js , 我下载的Node.js 16.20.2 ,下载地址 https://nodejs.org/dist/v16.20.2/node-v16.20.2-x64.msi ② 直接安装 ③ 这…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -创建图文投票实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

哔哩哔哩浏览器 AI 助手:bilibili subtitle

分享一个好用不火的浏览器插件&#xff0c;能够让我们在浏览 B 站视频的时候体验更棒。 写在前面 B 站视频时间越来越长的今天&#xff0c;在打开视频的时候&#xff0c;如果能够清晰直观的看到视频字幕&#xff0c;当我们点击带有时间轴的字幕就能够一键跳转到自己想看的视频…

阻止持久性攻击改善网络安全

MITRE ATT&CK框架是一个全球可访问的精选知识数据库&#xff0c;其中包含基于真实世界观察的已知网络攻击技术和策略。持久性是攻击者用来访问系统的众多网络攻击技术之一;在获得初始访问权限后&#xff0c;他们继续在很长一段时间内保持立足点&#xff0c;以窃取数据、修改…

Python 与 PySpark数据分析实战指南:解锁数据洞见

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 数据分析是当今信息时代中至关重要的技能之一。…

LeetCode刷题---最小栈

解题思路&#xff1a; 该题通过辅助栈的方式来解决 定义数据栈(用于实现正常操作流程)和辅助栈(用于获取最小元素)。 push:首先将数据push进数据栈中&#xff0c;此时再判断辅助栈是否为空或者当前数据是否小于辅助栈中的最小元素(栈顶元素)&#xff0c;如果条件成立&#xff0…

关于标准那些事——第八篇 起步

写标准与论文研究不同&#xff0c;她更关注现实已知事物的一致性&#xff0c;虽然说从科学研究的角度来看&#xff0c;并没有那么高深&#xff0c;但是从实用和有效性角度出发&#xff0c;写标准更需要进行情报收集&#xff0c;市场调研&#xff0c;对象分析、应用场景等基础工…

Replace()函数实例讲解——vba

Replace函数 描述 返回一个字符串&#xff0c;该字符串中指定的子字符串已被替换成另一子字符串&#xff0c;并且替换发生的次数也是指定的。 语法 Replace(expression, find, replace[, start[, count[, compare]]]) Replace函数语法有如下命名参数&#xff1a; …

HarmonyOS应用开发学习笔记 UIAbility组件间交互 UIAbility启动,页面跳转结果回调

1、 HarmoryOS Ability页面的生命周期 2、 Component自定义组件 3、HarmonyOS 应用开发学习笔记 ets组件生命周期 4、HarmonyOS 应用开发学习笔记 ets组件样式定义 Styles装饰器&#xff1a;定义组件重用样式 Extend装饰器&#xff1a;定义扩展组件样式 5、HarmonyOS 应用开发…

使用numpy处理图片——白色背景变全透明

在《使用numpy处理图片——基础操作》一文中&#xff0c;我们通过对所有像素的alpha值做修改&#xff0c;让图片变成半透明。 我们看到本来是黑色的字体也因为半透明的原因变得颜色比较淡。 本文我们将判断每个像素的RGB值。如果是纯白底色&#xff0c;则将该像素的alpha值调…

(1)(1.13) SiK无线电高级配置(五)

文章目录 前言 10 可用频率范围 11 DUTY_CYCLE 设置 12 低延迟模式 13 先听后说 (LBT) 14 升级无线电固件 15 MAVLink协议说明 前言 本文提供 SiK 遥测无线电(SiK Telemetry Radio)的高级配置信息。它面向"高级用户"和希望更好地了解无线电如何运行的用户。 1…

使用西瓜视频官网来创造一个上一集,下一集的按钮,进行视频的切换操作

需求: 仿照西瓜视频写一个视频播放和上一集下一集的按钮功能 回答: 先访问官网: 西瓜播放器 这是西瓜视频的官网, 点击官网的示例按钮,可以看到相关的视频示例以及相关的代码, 我们复制下来代码,然后添加按钮和切换视频的方法, 完整代码: <!DOCTYPE html> <ht…