[C#]winform部署PaddleOCRV3推理模型

【官方框架地址】

 https://github.com/PaddlePaddle/PaddleOCR.git 
【算法介绍】

PaddleOCR是由百度公司推出的一款开源光学字符识别(OCR)工具,它基于深度学习框架PaddlePaddle开发。这款工具提供了一整套端到端的文字检测和识别解决方案,非常适合用于各种类型的图像文本的识别任务。PaddleOCR关注于提供轻量级、灵活且高效的OCR能力,旨在帮助开发者和企业快速部署OCR功能,并支持多平台和多语言应用。

核心功能

文字检测

PaddleOCR的文字检测能力极强,它采用了先进的深度学习模型来定位图像中的文字区域。例如,它可以利用基于EAST(Efficient and Accurate Scene Text Detector)算法和DB(Differentiable Binarization)算法的模型来检测不同形状和大小的文字。这些算法能够快速准确地定位图像中的文字区域,即使在复杂背景或者多种布局的环境中也能保持良好的性能。

文字识别

PaddleOCR使用CRNN(Convolutional Recurrent Neural Network)结合CTC(Connectionist Temporal Classification)的方法进行文字识别。这一组合能够将图像中的文字区域转换成文字序列,且对于图像中的汉字、英文等多种语言都有很好的识别效果。PaddleOCR还采用了注意力模型来进一步提升识别的准确度。

端到端OCR

PaddleOCR实现了端到端的OCR识别,即结合文字检测和识别两个模块,提供一站式的服务。它可以自动处理从图像输入到文字输出的全流程,极大地简化了OCR的使用和部署流程。

架构设计和特点

模块化设计

PaddleOCR的设计非常模块化,它将文字检测、识别和版面分析等功能分开,用户可以根据需求灵活选择和组合模块。

轻量化和优化

PaddleOCR重视模型的轻量化和优化。它提供了多种大小的模型,以适应不同的计算资源和应用场景。此外,模型经过优化,能够在CPU、GPU和移动设备上快速运行。

强大的数据增强

为了提高模型的鲁棒性,PaddleOCR引入了丰富的数据增强技术,包括但不限于随机旋转、颜色抖动、随机裁剪等。这些技术可以提高模型对于不同光照、尺寸和角度的文字的识别能力。

多语言支持

PaddleOCR不仅支持中英文的识别,还支持世界上多种其他语言的识别,这得益于其庞大的多语言标注数据集和多语种训练技术。

开放和活跃的社区

PaddleOCR是完全开源的,它在GitHub上有着活跃的开发社区,不断有新的改进和特性添加进来。社区为用户提供了丰富的文档、教程和技术支持,使得用户能够快速上手并使用PaddleOCR。

应用场景

PaddleOCR可广泛应用于多个领域,如金融票据自动识别、工业自动化、智能交通、在线教育、医疗文档分析等。它能够识别身份证、驾驶证、银行卡、发票等多种类型的文档,并提取相关信息供后续处理。

技术优势

准确率高

PaddleOCR在多项国际标准数据集上的识别准确率都达到了业界领先水平。

速度快

PaddleOCR优化了模型结构和算法,使得识别速度非常快,能满足实时处理的需求。

易于部署

PaddleOCR支持多种部署方案,包括服务端、边缘计算和移动端,用户可以根据自己的需求选择最合适的部署方式。

综上所述,PaddleOCR不仅在技术上不断创新和优化,而且致力于打造开放、易用的OCR工具。这使得PaddleOCR不仅适合于学术研究,也非常适合于工业和商业应用,为广大用户和开发者提供了一个强大、灵活、高效的OCR解决方案。

【效果展示】


【实现部分代码】

FullOcrModel model = LocalFullModels.ChineseV3;byte[] sampleImageData;
string sampleImageUrl = @"https://www.tp-link.com.cn/content/images2017/gallery/4288_1920.jpg";
using (HttpClient http = new HttpClient())
{Console.WriteLine("Download sample image from: " + sampleImageUrl);sampleImageData = await http.GetByteArrayAsync(sampleImageUrl);
}using (PaddleOcrAll all = new PaddleOcrAll(model, PaddleDevice.Mkldnn())
{AllowRotateDetection = true, /* 允许识别有角度的文字 */ Enable180Classification = false, /* 允许识别旋转角度大于90度的文字 */
})
{// Load local file by following code:// using (Mat src2 = Cv2.ImRead(@"C:\test.jpg"))using (Mat src = Cv2.ImDecode(sampleImageData, ImreadModes.Color)){PaddleOcrResult result = all.Run(src);Console.WriteLine("Detected all texts: \n" + result.Text);foreach (PaddleOcrResultRegion region in result.Regions){Console.WriteLine($"Text: {region.Text}, Score: {region.Score}, RectCenter: {region.Rect.Center}, RectSize:    {region.Rect.Size}, Angle: {region.Rect.Angle}");}}
}


【视频演示】

https://www.bilibili.com/video/BV1Vc411b7gP/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee
【源码下载】

https://download.csdn.net/download/FL1623863129/88723716
【测试环境】

vs2019

netframework4.7.2

opencvsharp4.8.0

Sdcb.PaddleInference

Sdcb.PaddleOCR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/340415.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业必知的加速FTP传输解决方案

FTP是一种用于在网络上进行文件传输的协议,广泛应用于文件共享、数据备份、远程访问等场景。然而,随着数据量的增加和网络环境的复杂化,FTP传输面临着速度慢、安全性低、稳定性差、网络拥塞等问题,这些问题严重影响了企业的工作效…

为什么基于树的模型在表格数据任务中比深度学习更优?

论文 | Why do tree-based models still outperform deep learning on tabular data? 代码 | https://github.com/LeoGrin/tabular-benchmark 虽然深度学习在计算机视觉、自然语言处理等领域取得了显著的成果,但在处理表格数据任务方面,深度学习模型的…

Fenwick Tree——树状数组

问题陈述&#xff1a; 你得到一个长度为 N 的数组为 a0,a1,a2……an-1。处理以下类型的查询&#xff0c;一共有 Q 次查询。 0 p x : ap⬅ap x 1 l r : 打印 ai ( il 到 ir-1 的 ai 之和) 约束&#xff1a; 1 ≤ N,Q ≤ 500000 0 ≤ ai,x ≤ 1e9 0 ≤ p < N 0 ≤ li <…

YOLOv8-Seg改进:轻量化改进 | 超越RepVGG!浙大阿里提出OREPA:在线卷积重参数化

🚀🚀🚀本文改进:OREPA在线卷积重参数化巧妙的和YOLOV8结合,并实现轻量化 🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1)手把手教你如何训练YOLOv8-seg; 2)模型创新,提升分割性能; 3)独家…

解决:TypeError: ‘dict_keys’ object does not support indexing

解决&#xff1a;TypeError: ‘dict_keys’ object does not support indexing 文章目录 解决&#xff1a;TypeError: dict_keys object does not support indexing背景报错问题报错翻译报错位置代码报错原因解决方法方法一&#xff1a;方法二&#xff1a;方法三&#xff1a;今…

2023年度产品评选!人人都是产品经理携手boardmix博思白板联合呈现!

榜单内容概览 2023年度产品评选活动&#xff0c;由人人都是产品经理发起&#xff0c;汇聚了众多引领行业风向的优秀产品&#xff0c;涵盖技术创新、数字化服务、AI效率、运营增长等多领域。这些杰出的产品经过多轮专业评委的严格评审与用户投票的热烈参与&#xff0c;最终脱颖…

IntelliJ IDEA Java 连接 mysql 配置(附完整 demo)

下载 MySQL 驱动 从MySQL官网下载JDBC驱动的步骤如下&#xff1a; 1&#xff09;访问MySQL的官方网站&#xff1a;MySQL 2&#xff09;点击页面上方的"DOWNLOADS"菜单&#xff1b; 3&#xff09;在下载页面&#xff0c;找到"MySQL Community (GPL) Downloads…

uniapp 设置底部导航栏

uniapp 设置原生 tabBar 底部导航栏。 设置底部导航栏 一、创建页面&#xff0c;一定要在 pages.json 文件中注册。 二、在 pages.json 文件中&#xff0c;设置 tabBar 配置项。 pages.json 页面 {"pages": [...],"globalStyle": {...},"uniIdRout…

RT-Thread 中断管理

中断管理 什么是中断&#xff1f;简单的解释就是系统正在处理某一个正常事件&#xff0c;忽然被另一个需要马上处理的紧急事件打断&#xff0c;系统转而处理这个紧急事件&#xff0c;待处理完毕&#xff0c;再恢复运行刚才被打断的事件。 生活中&#xff0c;我们经常会遇到这…

【操作系统】优化MBR程序:让MBR调用显存吧

一.显存、显卡以及显示器的概述 显卡用于连接CPU和显示器&#xff0c;我们调用显示器时&#xff0c;其实就是利用显卡提供的IO接口间接地对显示器进行操作&#xff0c;所以显卡也称之为显示适配器。接下来我们将优化之前写的MBR程序&#xff08;参考&#xff1a;【操作系统】BI…

【算法】基础算法001之双指针

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.数组分块&#xf…

数字孪生+可视化技术 构建智慧新能源汽车充电站监管平台

前言 充电基础设施为电动汽车提供充换电服务&#xff0c;是重要的交通能源融合类基础设施。近年来&#xff0c;随着新能源汽车产业快速发展&#xff0c;我国充电基础设施持续增长&#xff0c;已建成世界上数量最多、服务范围最广、品种类型最全的充电基础设施体系。着眼未来新…