直接写一区! ZOA-PCNN-AT-SVM斑马优化并行卷积-支持向量机融合注意力机制的故障识别程序,特征可视化,实验多!图多!

适用平台:Matlab2023版本及以上

本原创程序提出的ZOA-PCNN-AT-SVM故障识别模型还没有人写!在此基础上进一步对参考模型进行多重改进,程序注释清晰,干货满满,下面对文章和程序做简要介绍!

①识别模型部分参考中文EI期刊《电力自动化设备》12月29号网络首发文献:《基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断》;②优化模型部分参考知名SCI、EI期刊《IEEE Access》2022年10月发表的论文《Zebra Optimization Algorithm》

该算法提出时间很短,目前还没有套用这个算法的文献

识别模型原文献解读:这篇文献中,首先,采集一维故障电压与电流信号的时序序列;其次,利用格拉姆角场对其进行变换,将两种一维时序信号转化为格拉姆角场,最后,将生成的两组图像同时送入CNN进行并行学习训练,实现逆变器故障诊断。

斑马优化ZOA简介:ZOA斑马优化的基本灵感来自斑马在自然界中的行为。ZOA模拟了斑马的觅食行为及其对捕食者攻击的防御策略,对 ZOA 步骤进行描述,然后进行数学建模。ZOA 在优化方面的性能根据 68 个基准函数进行评估,包括单峰、高维多模态、固定维多模态。将ZOA获得的结果与九种知名算法GWO、TLBO、GA、MPA、PSO、QANA、TSA、WOA和GSA的性能进行了比较,仿真结果表明,ZOA能够通过在探索和开发之间建立适当的平衡来解决优化问题,并且与9种竞争算法相比具有更优越的性能。并在四个实际工程问题上对ZOA进行了测试。

模型改进:我们提出的模型在上述文献模型基础上作出多重改进,提出的ZOA-PCNN-AT-SVM故障识别模型:采用双支路结构,仅需原始故障波形数据,即可根据波形数据,将一维序列转化为二维格拉姆求和场图像。将图像同时输入PCNN-AT-SVM模型,用ZOA对模型中的超参数进行寻优,提供两条支路提取的特征图,提供原始样本和特征样本之间的分布情况,提高模型可解释性,并计算精确度、召回率、精确率、F1分数等评价指标。故障识别流程如下:https://mbd.pub/o/bread/ZZmZmp5q

七重创新点:

1、时序图像化:将一维时序信号转化为二维图像,从而更全面地描述数据的特征。这有助于提取更丰富、更有区别性的特征,从而提高分类和识别的准确性。

2、空间特征学习:CNN(卷积神经网络)在图像处理中表现出色,能够有效地学习图像的空间特征和局部模式。将CNN用于图像数据的处理可以帮助提取图像的纹理、形状和边缘等特征,有助于更准确地进行分类和故障识别。

3、双支路结构:利用两个分支CNN学习不同的图像权重值,双支路高维特征互补,使得深层空间特征得到显著增强。

4、多头自注意力机制:融合多头注意力机制有效把握提取特征的贡献程度,将特征进行重点强化,提高故障识别的准确率。

5、可解释性为提升模型的可解释性,应用t-SNE可解释性算法对各个支路模块的特征图进行可视化;对比原始样本和ZOA-PCNN-AT-SVM提取特征后的样本分布情况。

6、改进输出结构:将原始的Softmax层改进为SVM,Softmax作为概率方法,会受到异常值的影响,而SVM采用样本分布的边缘来分类一定距离内的故障样本,对异常值具有更强的鲁棒性。

7、超参数优化:斑马优化算法ZOA对模型中的难以确定的学习率、支路1卷积核大小、支路2卷积核大小等参数进行寻优,使得模型的结构更加合理,提高了故障识别精度。

适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。

以下手把手带大家分析程序的结果:

数据格式:一行一个样本,最后一列为样本所属的故障类型标签直接替换数据就可以,使用Excel表格直接导入,不需要对程序大幅修改。程序内有详细注释,便于理解程序运行。

程序结果:(由上述一维序列自动转化为格拉姆图像)

模型结构:

PCNN 双支路实现特征可视化(证明2条支路的特征不同,有互补性)

与原始样本相比,ZOA-PCNN-SVM 能够实现相同样本聚合,实现同类别故障样本的聚合(不同类间的区分,同类间的聚合)

模型训练曲线:

训练曲线:和 斑马优化ZOA适应度曲线:

部分图片来源于网络,侵权联系删除!

部分代码:

%% %%%%%%%%%%%%%%%%%%%  ZOA-PCNN-SVM算法  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%来自公众号:《创新优化及预测代码》%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
完整代码:https://mbd.pub/o/bread/ZZmZmp5q
%% 定义ZOA参数
Fun_name='objectiveFunction1';                               %% 目标函数
SearchAgents = 2;                                            %% 斑马数量(种群规模)
Max_iterations = 10;                                         %% 最大迭代次数%% 目标函数
fitness = @objectiveFunction;    %% 获取目标函数信息
lowerbound = [0.001, 1, 2];      %% 寻优参数下限  [学习率, 支路1卷积核大小, 支路2卷积核大小];
upperbound = [0.01, 5, 6];       %% 寻优参数上限  [学习率, 支路1卷积核大小, 支路2卷积核大小];
dimension = 3;                   %% 有几个需要优化的参数就是几维%% ZOA-PCNN-SVM优化参数优化(学习率、支路1卷积核、支路2卷积核)
[Best_score,Best_pos,ZOA_curve,bestPred,Best_PCNN_AT_SVM, Best_info]=zoa( ...
SearchAgents,Max_iterations,lowerbound,upperbound,dimension,fitness);  % 使用斑马优化算法计算目标函数%% 保存优化数据     
% 使用save函数保存变量
save(fullfile(save_path, 'bestPred.mat'), 'bestPred');             %% 最佳预测结果
save(fullfile(save_path, 'Best_PCNN_SVM.mat'), 'Best_PCNN_AT_SVM');   %% 最佳网络
save(fullfile(save_path, 'Best_info.mat'), 'Best_info');           %% 最佳网络下的迭代曲线
save(fullfile(save_path, 'ZOA_curve.mat'), 'ZOA_curve');           %% 适应度曲线%% 优化结果可视化
disp(['斑马优化后的神经网络识别误差:', num2str((1-Best_score).*100), '%']);
figure
plot(ZOA_curve,LineWidth=2,Color=[0 0 1]);
title('斑马优化ZOA-PCNN-AT-SVM适应度曲线')
xlabel('优化迭代次数');
ylabel('适应度');% ZOA优化后-PCNN网络的结构参数信息
analyzeNetwork(Best_PCNN_AT_SVM) ;%% 查看网络结构
figure
plot(Best_PCNN_AT_SVM)
title("斑马优化后的ZOA-PCNN-AT-SVM模型")  % SVM属于机器学习部分,故无法绘制,实际上是ZOA-PCNN-AT-SVM模型 SVM取代原模型中的softmax层%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%来自公众号:《创新优化及预测代码》%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 过程步骤一: PCNN 双支路实现特征可视化(证明2条支路的特征不同,有互补性)%% %%%%%%%%%%%%%%%%%%%  分别绘制双支路的特征图  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%来自公众号:《创新优化及预测代码》%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 激活支路1末端的maxpool1层
layer1 = 'maxpool1';
LayersNeed = activations(Best_PCNN_AT_SVM,imdsTest,layer1,'OutputAs','channels');% 支路1
%%  支路1所提取特征
% 前4个池化核
figure;
for i = 1:4                             % 前4个特征图 i的不能超过池化核的个数LayersFeature = LayersNeed(:,:,i,2);% 随机针对第2个样本的特征提取过程subplot(2, 2, i);                   % 创建池化层1的第i个子图image(LayersFeature, 'CDataMapping', 'scaled');colormap(hsv);xlim([1, size(LayersFeature, 2)]);  % 限制坐标轴ylim([1, size(LayersFeature, 1)]);  % 限制坐标轴axis off;                           % 关闭坐标轴显示box on;title(['特征图', num2str(i)]);      % 添加特征图标题
end

部分图片来源于网络,侵权联系删除! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/345963.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Realm Management Extension领域管理扩展(下)

四、颗粒保护检查 本节描述了RME引入的颗粒保护检查。颗粒保护检查使得能够在不同的物理地址空间之间动态分配内存区域。 本节将向您介绍以下功能: 颗粒保护表的结构用于颗粒保护检查的故障报告区域在物理地址空间之间的过渡正如在物理地址一节中所述,RME提供了四个物理地址…

电影开场后也能退票,“电影仅退款”能治烂片病吗?

1月11日,“#电影开场后也能退票了#”词条登上微博热搜。 根据央视六套《中国电影报道》,从今年元旦开始,湖南长沙部分影院开启了新型电影保险模式的试点。 在电影开场后30分钟以内,市民如果对电影内容不满意,可借助小…

【Google SEO】需要跟踪的 12 个关键 Google Analytics 指标

Google Analytics 是一个数据宝库。但对于初学者来说,它可能会让人不知所措。 从哪里入手?哪些指标真正重要? 在本篇文章中,我们将介绍 Google Analytics 中最重要的 12 个指标。这些指标可以最清晰地反映网站的性能。 我们将解…

深入理解Lock Support

第1章:引言 大家好,我是小黑,今天咱们要聊聊Lock Support。Lock Support是Java并发编程的一块基石,它提供了一种非常底层的线程阻塞和唤醒机制,是许多高级同步工具的基础。 为什么要关注Lock Support?线程…

SAP SQVI制作报表及SE93创建事务代码

在平时的项目中,财务想查询所有的凭证明细,SAP的查询凭证FB03不能满足需求,所以用SQVI制作一个简易的查询报表。 1、打开SQVI,填写自开发报表的名称“ZFB03”,点击“创建”,输入自开发报表的名称“凭证明细…

优化的实时换脸项目——DeepFaceLive

DeepFaceLive是一款基于人工智能技术的换脸工具,可以实现实时面部捕捉和换脸效果。它利用深度学习和计算机视觉算法,能够以惊人的准确度和速度将脸部特征无缝地映射到任何人的脸上。DeepFaceLive的特点是可以实时换脸,让用户通过网络摄像头应…

ArrayList源码阅读

文章目录 简介例子继承结构概览代码分析成员变量方法迭代器子列表 总结参考链接 本人的源码阅读主要聚焦于类的使用场景,一般只在java层面进行分析,没有深入到一些native方法的实现。并且由于知识储备不完整,很可能出现疏漏甚至是谬误&#x…

深入浅出线程原理

Linux 中的线程本质 线程接口由 Native POSIX Thread Library 提供,即:NPTL 库函数 线程被称为轻量级进程 (Light Weight Process) 每一个线程在内核中都对应一个调度实体,拥有独立的结构体 (task_struct) 内核设计:一个进程对…

2.右值引用和移动语义

文章目录 右值引用和移动语义&&的特性右值引用优化性能,避免深拷贝移动(move )语义forward 完美转发emplace_back 减少内存拷贝和移动unordered container 无序容器map和unordered_map的差别内部实现机理不同优缺点以及适用处 小结优缺点以及适用处 小结 代…

CMake HelloWorld

(一)CMake使用 CMake使用 1.注释# 这是一个CMakeLists.txt文件cmake_minimum_required(VERSION 3.10)2.add_executable 定义工程会生成一个可执行程序add_executable(可执行程序名 源文件名称)# 样式1:add_executable(app add.c div.c main.c mult.c su…

传奇手游详细图文架设教程

开始架设 1. 架设条件 传世手游架设需要准备: linux 服务器,建议 CentOs 7.6 版本,游戏源码, 游戏运行大约占 2.5G 左右内存。 2. 安装宝塔及环境 宝塔是一个服务器运维管理软件,安装命令: yum inst…

阿里云RDMA通信库XRDMA论文详解

RDMA(remote direct memory access)即远端直接内存访问,是一种高性能网络通信技术,具有高带宽、低延迟、无CPU消耗等优点。RDMA相比TCP在性能方面有明显的优势,但在编程复杂度上RDMA verbs却比TCP socket复杂一个数量级。 开源社区和各大云厂…