一 照片修复-GPEN介绍:
gpen是一个优秀的照片修复框架,关键是开源的,它是基于GAN先验嵌入网络的野外盲脸复原,特别是针对人脸修复效果特别好,先看一下官方的效果图:
修复效果图前后对比:
二 安装GPEN
1 下载GPEN
从github下载GPEN源码
git clone https://github.com/yangxy/GPEN.git
cd GPEN
2 安装GPEN环境
安装搭建环境与依赖
pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
安装项目依赖包:
pip install -r requirements.txt
安装 torch
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
环境安装完后占用大概大小(不同的版本,大小也不同)
3 下载项目数据模型:
[RetinaFace-R50](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth) [ParseNet-latest](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/ParseNet-latest.pth) | [model_ir_se50](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/model_ir_se50.pth) | [GPEN-BFR-512](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth) | [GPEN-BFR-512-D](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512-D.pth) | [GPEN-BFR-256](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256.pth) | [GPEN-BFR-256-D](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256-D.pth) | [GPEN-Colorization-1024](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth) | [GPEN-Inpainting-1024](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Inpainting-1024.pth) | [GPEN-Seg2face-512](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Seg2face-512.pth) | [realesrnet_x1](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x1.pth) | [realesrnet_x2](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth) | [realesrnet_x4](https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x4.pth)
如下图,已下载好放在weights目录下:
三 运行GPEN修复照片
python demo.py --task FaceEnhancement --model GPEN-BFR-512 --in_size 512 --channel_multiplier 2 --narrow 1 --use_sr --sr_scale 4 --use_cuda --save_face --indir examples/imgs --outdir examples/outs-bfr
修复生成图片文件
修复前后对比图 1
修复前后对比图 2
Solvay_conference_1927_face00.jpg
看上去非常清晰,这里只选了 GPEN-BFR-512就有如此效果,很完美。还有其它数据模型,待测试中。