理想架构的Doherty功率放大器理论与仿真

Doherty理论—理想架构的Doherty功率放大器理论与仿真

参考:
三路Doherty设计
01 射频基础知识–基础概念

ADS仿真工程文件链接:理想架构的Doherty功率放大器理论与仿真

目录

  • Doherty理论---理想架构的Doherty功率放大器理论与仿真
    • 0、Doherty架构的作用
    • 1、经典Doherty架构
        • 1.1、经典Doherty结构
        • 1.2、经典Doherty效率曲线
        • 1.3、经典Doherty的输出电压、电流
        • 1.4、经典Doherty的输出阻抗关系
    • 2、经典Doherty架构的理论推导过程
        • 2.1、低功率状态
        • 2.2、高功率状态
        • 2.3、理论输出阻抗计算

0、Doherty架构的作用

Doherty功放是一种利用负载调制技术提高回退效率的功放,其应用背景是为了解决通信系统中调制信号峰均比越来越大,而传统放大器在功率回退点效率低的问题。

为了提高通讯系统的频谱利用率,为用户提供快速的数据传输和多媒体数据业务以及全球漫游功能,现在的通讯系统采用宽带的数字调制技术,如BPSK、QPSK和QAM等,其峰均比(PAPR)都较高

峰均比是啥意思呢,就是峰值功率和平均功率的比值,比如下面这个OFDM的时域信号,由于信号高低不平,峰值功率和平均功率差异较大。假如峰值功率是40dbm,而平均功率是32.5dbm,那么这个信号的峰均比就是40-32.5=7.5dbm。
在这里插入图片描述
高峰均比对功率放大器的设计提出了更高的要求,我们都知道功放在饱和时效率较高,B类最高可到78.5%的效率。假设有一个B类功放饱和时输出功率40dbm,效率78.5%,那么如果使用PAPR是7.5dB的调制信号,为了同时保证峰值不失真,这个功放在大部分时间的输出功率就是32.5dBm,那么其在32.5dBm输出时的效率是多少呢?我们使用ADS仿真得到结果(仿真文件在最上方链接):
在这里插入图片描述

在这里插入图片描述
由此可见,为了同时保证峰值和均值的不失真,功率放大器大部分时间都工作在回退状态,但是普通单管功放在回退状态下效率下降快,效率低,由此能耗大不实用。

Doherty技术、Cherix技术(Outphasing异相)、EER(envelope elimination and restoration)和包络跟踪技术ER都是为了解决这一问题。

其中Doherty技术在基站功放运用最广;EER和ER效率高,但是受制于对电源带宽的要求,往往运用在手机等小功率的功放中。

1、经典Doherty架构

1.1、经典Doherty结构

咋参考Switchmode RF and Microwave Power Amplifiers里面的图片,Z2的阻抗为Ropt(B类最佳基波阻抗),Z1是四分之一波长阻抗变换器,将Ropt/2的阻抗变换为50欧姆,因此其阻抗为(Ropt/2*50)^0.5欧姆。至于峰值功放前的四分之一波长线,那个是相位延迟的,因为载波功放那边有一个四分之一波长线了,为了让合路的相位一致,必须也要在峰值功放加上一个。
在这里插入图片描述
直接讲理论可能比较难,先在ADS中仿真一下:
在这里插入图片描述

1.2、经典Doherty效率曲线

对上面结构进行仿真,可以看到,在6dB回退的时候效率再次达到最高78.5%,在7.5dB回退的时候,效率高达65.3%,非常的yes了:
在这里插入图片描述

1.3、经典Doherty的输出电压、电流

观察峰值功放和载波功放的电压电流,由于是1:1等分的,在饱和时峰值功放和载波功放的输出功率相同,输出电压、电流也一致,如下所示:
在这里插入图片描述

1.4、经典Doherty的输出阻抗关系

观察峰值功放和载波功放的输出阻抗变化,由此可见峰值功放的输出阻抗从无穷大逐渐下降到Ropt,而载波功放的输出阻抗在峰值功放关闭时为2Ropt,在峰值功放打开后逐渐降为Ropt:
在这里插入图片描述

2、经典Doherty架构的理论推导过程

参考:应用于5G通信系统高效率射频功率放大器的研究
Doherty功放原理图如下,由功率分配器、工作模式为B类(或AB类)的载波功放、工作模式为C类的峰值功放以及功率合成网络组成,输出负载阻抗为Ropt/2(1.1的架构输出阻抗是50欧姆,因此多了四分之一波长微带线进行阻抗变换,把Ropt/2变换到50欧姆)
在这里插入图片描述

2.1、低功率状态

下图为Doherty功放在低功率工作状态的电路拓扑图,经功率分配器流入峰值功放的射频信号功率未能将其开启,仅载波功放启动工作(峰值功放不工作,那边是断开的):
在这里插入图片描述
载波功放的负载阻抗为(ZL通过四分之一波长线进行变换,得到2Ropt):
Z C = Z T Z L = 2 R o p t Z_{\mathrm{C}}=\frac{Z_{\mathrm{T}}}{Z_{\mathrm{L}}}=2R_{\mathrm{opt}} ZC=ZLZT=2Ropt

此时载波功放为高阻抗状态,电压提前饱和达到Vmax。为什么负载阻抗2Ropt会使得电压提前饱和呢?我初学时也考虑过这个问题,这是因为GAN晶体管实际上是压控电流源,在固定栅极输入情况下,其输出电流是恒定的,此时增加负载阻抗从Ropt到2Ropt,那么根据欧姆定律V=IR,R=2Ropt,那么I会在峰值电流一半的时候电压就饱和了, 1.3小节的仿真图像中也能看出这一点。

由于电流仅达到饱和值的一半,因此该未饱和功率值为:
P O B O − 2 R o p t = 1 2 I 1 ⋅ V 1 = 1 4 I m a x V d c P_{\mathrm{OBO}_{-}2R_{\mathrm{opt}}}=\frac{1}{2}I_{1}\cdot V_{1}=\frac{1}{4}I_{\mathrm{max}}V_{\mathrm{dc}} POBO2Ropt=21I1V1=41ImaxVdc

也就是峰值功放单独工作时其输出功率为DPA架构极限输出功率的四分之一,也就是传统DPA具有6dB的回退区间。

2.2、高功率状态

下图为Doherty功放在高功率工作状态的等效电路图。随着输入功率的不断增大,峰值功率放大器逐渐开启并触发有源负载调制直至两路功放均达到饱和输出状态。
在这里插入图片描述
对于对称型Doherty功放,假设 ξ ( 0 ≤ ξ ≤ 1 ) \xi(0\leq\xi\leq1) ξ(0ξ1)为回退因数,则两路功放电流值分别为:
{ I C = I m a x 4 ( 1 + ξ ) I p = I m a x 2 ξ \left.\left\{\begin{aligned}I_\mathrm{C}&=\frac{I_\mathrm{max}}4\big(1+\xi\big)\\I_\mathrm{p}&=\frac{I_\mathrm{max}}2\xi\end{aligned}\right.\right. ICIp=4Imax(1+ξ)=2Imaxξ
当两路功放电流饱和( ξ = 1 \xi=1 ξ=1)时,可以得到:
Z C = Z P = R o p t V C = V P = I m a x 2 ⋅ R o p t \begin{aligned}Z_\mathrm{C}&=Z_\mathrm{P}=R_\mathrm{opt}\\\\V_\mathrm{C}&=V_\mathrm{P}=\frac{I_\mathrm{max}}{2}\cdot R_\mathrm{opt}\end{aligned} ZCVC=ZP=Ropt=VP=2ImaxRopt
基波电流在两路功放输出端分别为 I c I_c Ic I c 1 I_{c1} Ic1,在信号合路处两端的有效负载分别为:
Z C 1 = Z L ( 1 + I p I C 1 ) = R o p t 2 ( 1 + I p I C 1 ) Z C = Z L ( 1 + I C 1 I P ) = R o p t 2 ( 1 + I C 1 I P ) \begin{aligned}Z_{\mathrm{C1}}&=Z_{\mathrm{L}}\bigg(1+\frac{I_{\mathrm{p}}}{I_{\mathrm{C1}}}\bigg)=\frac{R_{\mathrm{opt}}}{2}\bigg(1+\frac{I_{\mathrm{p}}}{I_{\mathrm{C1}}}\bigg)\\\\Z_{\mathrm{C}}&=Z_{\mathrm{L}}\bigg(1+\frac{I_{\mathrm{C1}}}{I_{\mathrm{P}}}\bigg)=\frac{R_{\mathrm{opt}}}{2}\bigg(1+\frac{I_{\mathrm{C1}}}{I_{\mathrm{P}}}\bigg)\end{aligned} ZC1ZC=ZL(1+IC1Ip)=2Ropt(1+IC1Ip)=ZL(1+IPIC1)=2Ropt(1+IPIC1)
通过四分之一波长阻抗逆变线的两端电流电压特性可知:
Z T = V C I C 1 Z_{\mathrm{T}}=\frac{V_{\mathrm{C}}}{I_{\mathrm{C1}}} ZT=IC1VC
由上面两个式子可得:
Z C 1 = R o p t 2 ( 1 + I p ⋅ Z T V C ) = R o p t 2 ( 1 + I P ⋅ R o p t V C ) Z_{\mathrm{C1}}=\frac{R_{\mathrm{opt}}}{2}\Bigg(1+\frac{I_{\mathrm{p}}\cdot Z_{\mathrm{T}}}{V_{\mathrm{C}}}\Bigg)=\frac{R_{\mathrm{opt}}}{2}\Bigg(1+\frac{I_{\mathrm{P}}\cdot R_{\mathrm{opt}}}{V_{\mathrm{C}}}\Bigg) ZC1=2Ropt(1+VCIpZT)=2Ropt(1+VCIPRopt)

对于四分之一波长阻抗逆变线,存在如下阻抗变换关系:
Z C = Z T 2 Z C 1 = R o p t 2 Z C 1 Z_{\mathrm{C}}=\frac{Z_{\mathrm{T}}^{2}}{Z_{\mathrm{C1}}}=\frac{R_{\mathrm{opt}}^{2}}{Z_{\mathrm{C1}}} ZC=ZC1ZT2=ZC1Ropt2

联立上面两个公式,可得:
Z C = 2 Z T 2 R o p t ( 1 + I p ⋅ R o p t V C ) Z_{\mathrm{C}}=\frac{2{Z_{\mathrm{T}}}^2}{R_{\mathrm{opt}}\left(1+\frac{I_{\mathrm{p}}\cdot R_{\mathrm{opt}}}{V_{\mathrm{C}}}\right)} ZC=Ropt(1+VCIpRopt)2ZT2
V C = I max ⁡ 2 ⋅ R o p t V_{\mathrm{C}}=\frac{I_{\max}}{2}\cdot R_{\mathrm{opt}} VC=2ImaxRopt

由式(2.46)可知,在大功率状态 V C V_C VC不受回退因数 ξ \xi ξ的影响,电压在电流变化时仍能保持峰值状态,由此得到的理论结果如下所示(和上面仿真的一致):
在这里插入图片描述

2.3、理论输出阻抗计算

下式也可以用来确定载波功放的输出阻抗: Z C = 2 Z T 2 R o p t ( 1 + I p ⋅ R o p t V C ) Z_{\mathrm{C}}=\frac{2{Z_{\mathrm{T}}}^2}{R_{\mathrm{opt}}\left(1+\frac{I_{\mathrm{p}}\cdot R_{\mathrm{opt}}}{V_{\mathrm{C}}}\right)} ZC=Ropt(1+VCIpRopt)2ZT2

当峰值功放没有开启时, I p = 0 I_{\mathrm{p}}=0 Ip=0,由此:
Z C = 2 Z T 2 R o p t ( 1 + I p ⋅ R o p t V C ) = 2 R o p t Z_{\mathrm{C}}=\frac{2{Z_{\mathrm{T}}}^2}{R_{\mathrm{opt}}\left(1+\frac{I_{\mathrm{p}}\cdot R_{\mathrm{opt}}}{V_{\mathrm{C}}}\right)}=2R_{\mathrm{opt}} ZC=Ropt(1+VCIpRopt)2ZT2=2Ropt

当峰值功放饱和时, I p = V C / R o p t I_{\mathrm{p}}=V_C/R_{opt} Ip=VC/Ropt,由此:
Z C = 2 Z T 2 R o p t ( 1 + I p ⋅ R o p t V C ) = R o p t Z_{\mathrm{C}}=\frac{2{Z_{\mathrm{T}}}^2}{R_{\mathrm{opt}}\left(1+\frac{I_{\mathrm{p}}\cdot R_{\mathrm{opt}}}{V_{\mathrm{C}}}\right)}=R_{\mathrm{opt}} ZC=Ropt(1+VCIpRopt)2ZT2=Ropt


当峰值功放没有开启时, I p = 0 I_{\mathrm{p}}=0 Ip=0,由此R=V/I,峰值功放输出阻抗无穷大。

当峰值功放饱和时 Z C = Z P = R o p t Z_\mathrm{C}=Z_\mathrm{P}=R_\mathrm{opt} ZC=ZP=Ropt,由此可以画图:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/423204.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于jQuery与Spring MVC实现用户密码异步修改的实战演示

文章目录 一、实战概述二、实战步骤(一)创建表单1、表单界面2、表单代码3、脚本代码 (二)后端控制器(三)测试代码,查看效果1、弹出更改密码表单2、演示更改密码操作 三、实战总结 一、实战概述 …

C++入门学习(十一)字符型

C中的字符型可以表示ASCII码中的所有字符,包括字母、数字、标点符号等。 ASCII码是一种用于编码字符的编码系统,它使用不同的数值来表示不同的字符。ASCII码使用7位或8位二进制数来表示每个字符,因此可以表示128或256个不同的字符。 在ASCI…

【力扣】记录一下竞赛分上 Knight

记录一下力扣上 Knight 力扣的题还是相对来说比较简单的,前两个月写的题多一点,后面几乎都是只做了每日一题,感觉正常来说刷个两三个月的题水平就差不多够了,甚至在我才刷半个月的时候就可以做三题了,排名和现在差不多…

Unity3D控制人物移动的多种方法

系列文章目录 unity知识点 文章目录 系列文章目录前言一、人物移动之键盘移动1-1、代码如下1-2、效果 二、人物移动之跟随鼠标点击移动2-1、代码如下2-2、效果 三、人物移动之刚体移动3-1、代码如下3-2、效果 四、人物移动之第一人称控制器移动4-1、代码如下4-2、效果 五、And…

计算视图里的General 和 advanced

1. data category: 是什么类型的视图 2. run with:执行脚本的计算视图时候,用什么权限来执行 3. type:标准视图还是个时间层级视图 4. default client: 用哪个client来过滤视图的值(一般在BW上就用session client,从底层很多个ERP clie…

如何使用 Helm 在 K8s 上集成 Prometheus 和 Grafana|Part 3

在本教程的前两部分,我们分别了解和学习了Prometheus 和 Grafana 的基本概念和使用的前提条件,以及使用 Helm 在 Kubernetes 上安装 Prometheus。 在今天的教程中,我们将为你介绍以下内容: 安装 Grafana;集成 Promethe…

[ACM学习] 背包问题深化

01背包的优化 因为我们更新数据时,都是从左到右进行更新的,所以我们可以把二维的dp变成一维的dp,并从后往前进行更新(这样可以保证进行更新的数据都是由旧数据更新新数据,而不是由新数据更新旧数据) 多重背…

LeetCode-135】分发糖果(贪心)

LeetCode135.分发糖果 题目描述 老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。 你需要按照以下要求,帮助老师给这些孩子分发糖果: 每个孩子至少分配到 1 个糖果。…

探索设计模式的魅力:一次设计,多次利用,深入理解原型模式的设计艺术

原型模式是一种设计模式,属于创建型模式的一种,它用于创建重复的对象,同时又能保持性能。在原型模式中,通过复制现有对象的原型来创建新对象,而不是通过实例化类来创建对象。这样做可以避免耗费过多的资源开销&#xf…

docker compose安装milvus

下载对应版本的milvus-standalone-docker-compose.yml wget https://github.com/milvus-io/milvus/releases/download/v2.3.5/milvus-standalone-docker-compose.yml重新命令为docker-compose.yml mv milvus-standalone-docker-compose.yml docker-compose.yml启动milvus doc…

《WebKit 技术内幕》学习之九(4): JavaScript引擎

4 实践——高效的JavaScript代码 4.1 编程方式 关于如何使用JavaScript语言来编写高效的代码,有很多铺天盖地的经验分享,以及很多特别好的建议,读者可以搜索相关的词条,就能获得一些你可能需要的结果。同时,本节希望…

074:vue+mapbox 加载here地图(影像瓦片图 v2版)

第074个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中加载here地图的影像瓦片图 v2软件版本。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方式示例源代码(共77行)相关API参考:专栏目标示例效果