Chain-of-Thought Prompting Elicits Reasoning in Large Language Models导读

通过生成一系列中间推理步骤(即“思维链”)显著提高大型语言模型进行复杂推理的能力

这篇论文探讨了如何通过生成一系列中间推理步骤(即“思维链”)显著提高大型语言模型进行复杂推理的能力。研究人员使用一种简单的方法——思维链提示法——提供一些思维链示例作为提示,发现这种方法可以使足够大的语言模型自然地获得这种推理能力。实验结果表明,在三个大型语言模型上进行测试时,思维链提示法可以显著提高在算术、常识和符号推理任务上的表现。例如,仅使用八个思维链示例就可以将PaLM 540B的语言模型准确率提升到GSM8K基准测试中的最佳水平,甚至超过了经过微调的GPT-3模型。

https://damo-moshicloud-test.oss-cn-hangzhou.aliyuncs.com/document/testcase/dingding/zhiwen_cases/1188581702114963456/1188581702114963456_cut_Figure_2.png

https://damo-moshicloud-test.oss-cn-hangzhou.aliyuncs.com/document/testcase/dingding/zhiwen_cases/1188581702114963456/1188581702114963456_cut_Figure_1.png

论文方法

方法描述

该论文提出了一种名为“chain-of-thought prompting”的方法,旨在让语言模型能够生成一系列连贯的中间推理步骤,最终得出问题的答案。这种方法是通过提供一些示范性的例子来训练模型,并使用少量的提示来引导模型生成链式思维过程。例如,在数学问题中,可以将问题分解为多个子问题并逐步求解,最后给出答案。

方法改进

与传统的基于任务特定微调的方法相比,“chain-of-thought prompting”具有以下优点:

  1. 可以处理多步推理问题:通过将问题分解成多个子问题,模型可以更有效地分配计算资源来解决问题。

  2. 提供可解释性窗口:链式思维过程提供了模型如何得出某个答案的解释,可以帮助调试模型在推理路径上出错的地方。

  3. 可应用于多种任务:链式思维推理可用于解决各种人类可以通过语言解决的任务,如数学问题、常识推理和符号操作等。

  4. 易于实现:只需将一些示例性的链式思维序列作为少数样本提示输入到大型预训练的语言模型中即可实现。

解决的问题

该方法主要解决了语言模型在处理需要多步推理的问题时表现不佳的问题。通过引入链式思维推理,模型可以更好地理解和解决这些问题,从而提高其性能。此外,该方法还提供了可解释性和可扩展性,使其适用于各种不同的任务和应用场景。

https://damo-moshicloud-test.oss-cn-hangzhou.aliyuncs.com/document/testcase/dingding/zhiwen_cases/1188581702114963456/1188581702114963456_cut_Figure_1.png

论文实验

本文主要介绍了针对数学和常识推理问题的链式思维提示技术在不同规模的语言模型中的应用效果,并对其进行了多组对比实验。具体来说,本文涉及了以下四个方面的实验:

  1. 数学问题解决能力实验:本实验旨在探讨语言模型使用链式思维提示技术在解决数学问题方面的能力。实验结果表明,链式思维提示技术能够显著提高语言模型在解决复杂数学问题上的表现,尤其是在需要多个步骤才能得出答案的问题上。此外,该技术的效果随着模型规模的增加而逐渐增强。

  2. 常识推理实验:本实验旨在研究链式思维提示技术在解决常识推理问题上的效果。实验结果显示,链式思维提示技术能够显著提高语言模型在解决各种类型的常识推理问题上的表现,尤其是对于需要多个步骤才能得出答案的问题。

  3. 符号推理实验:本实验旨在探究链式思维提示技术在解决符号推理问题上的效果。实验结果表明,链式思维提示技术能够帮助语言模型更好地理解和处理符号推理问题,从而实现更好的解决方案。

  4. 鲁棒性测试实验:本实验旨在评估链式思维提示技术在面对不同标注者、不同数据集以及不同模型规模时的表现。实验结果表明,链式思维提示技术对不同的数据集和模型规模具有较好的鲁棒性,且其表现不受标注者的影响。

综上所述,本文通过多项实验证明了链式思维提示技术在解决数学、常识推理和符号推理问题上的有效性,并证明了该技术在不同数据集和模型规模下的鲁棒性。这些实验结果为将链式思维提示技术应用于实际场景提供了有力的支持。

https://damo-moshicloud-test.oss-cn-hangzhou.aliyuncs.com/document/testcase/dingding/zhiwen_cases/1188581702114963456/1188581702114963456_cut_Table_3.png

https://damo-moshicloud-test.oss-cn-hangzhou.aliyuncs.com/document/testcase/dingding/zhiwen_cases/1188581702114963456/1188581702114963456_cut_Table_7.png

https://damo-moshicloud-test.oss-cn-hangzhou.aliyuncs.com/document/testcase/dingding/zhiwen_cases/1188581702114963456/1188581702114963456_cut_Table_5.png

论文总结

文章优点

  • 论文提出了一种简单而广泛适用的方法——链式思维提示(chain-of-thought prompting),用于增强大型语言模型的推理能力。

  • 通过实验证明,链式思维提示能够显著提高大型语言模型在算术、常识和符号推理等任务上的表现,并且比传统的提示方法具有更强的泛化能力和更小的数据需求。

  • 研究结果表明,链式思维提示是一种有效的工具,可以扩展大型语言模型的能力范围,进一步激发了使用自然语言处理技术解决复杂问题的研究方向。

方法创新点

  • 提出了链式思维提示这一新的提示方式,通过生成一系列中间自然语言推理步骤来引导模型完成推理任务。

  • 在实验中,将链式思维提示与标准提示进行了比较,证明了其优越性和普适性。

  • 这一方法不需要大规模训练数据集,也不需要针对每个新任务单独微调模型,因此具有很大的应用潜力。

未来展望

  • 链式思维提示方法的成功启示我们,可以通过更加复杂的提示方式来提高大型语言模型的推理能力。

  • 可以探索如何在更小的语言模型上实现推理能力,并研究如何更好地利用合成数据或零样本推理等技术来降低注释成本。

  • 可以进一步研究如何使链式思维提示与其他提示方法相结合,以提高大型语言模型的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/433530.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue项目如何打包,java项目如何打包

目录 vue项目如何打包 java项目如何打jar包 使用Maven打包为JAR(方式一)视图: 先双击clean再双击package即可打包 使用Maven打包为JAR(方式二)命令: 1、确保你已经安装了Maven,并且配置了相应…

通俗易懂理解小波池化以及WaveCNet网络模型

重要说明:本文从网上资料整理而来,仅记录博主学习相关知识点的过程,侵删。 一、参考资料 github代码:WaveCNet 小波变换和曲波变换用于池化层 通俗易懂理解小波变换(Wavelet Transform) 二、相关介绍 关于小波变换的详细介绍…

pdf.js 实现pdf在线搜索,分页,下载,放大,打印功能

下载插件地址: https://download.csdn.net/download/xiaogg3678/88780912 浏览器在线预览地址: http://localhost/pdfjs-viewer/web/viewer.html?filehttp://localhost/pdfjs-viewer/web/compressed.tracemonkey-pldi-09.pdf

springboot快速写接口

1. 建proj形式 name会变成文件夹的名字,相当于你的项目名称 基础包 2. 基础依赖 3. 配置数据库 这里要打开mysql,并且创建数据库 方法: 安装好数据库,改好账号密码用navicat来建表和账号配置properties.yml文件即可 4.用res…

C语言之指针的地址和指向的内容总结(八十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

分布式因果推断在美团履约平台的探索与实践

美团履约平台技术部在因果推断领域持续的探索和实践中,自研了一系列分布式的工具。本文重点介绍了分布式因果树算法的实现,并系统地阐述如何设计实现一种分布式因果树算法,以及因果效应评估方面qini_curve/qini_score的不足与应对技巧。希望能…

Discuz论坛搭建:Linux宝塔面板一键部署,固定地址畅享公网访问

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 安装基础环境二. 一键部署Discuz三. 安装cpolar工具四. 配置域名访问Discuz…

ST-Link调试器:功能、用途和引脚

ST-Link调试器:功能、用途和引脚 介绍 在嵌入式系统开发中,调试器是一种至关重要的工具,它允许开发人员调试和编程微控制器,以确保系统正常运行并解决潜在的问题。ST-Link是STMicroelectronics公司推出的一款强大的调试器&#x…

【JaveWeb教程】(30)SpringBootWeb案例之《智能学习辅助系统》的详细实现步骤与代码示例(3)员工管理的实现

目录 SpringBootWeb案例033. 员工管理3.1 分页查询3.1.1 基础分页3.1.1.1 需求分析3.1.1.2 接口文档3.1.1.3 思路分析3.1.1.4 功能开发3.1.1.5 功能测试3.1.1.6 前后端联调 3.1.2 分页插件3.1.2.1 介绍3.1.2.2 代码实现3.1.2.3 测试 3.2 分页查询(带条件)3.2.1 需求3.2.2 思路分…

学习PyQt5

1、布局之后,无法移动对象到指定区域,无法改变对象大小。 原因:因为CtrlA选中了整个窗口,然后布局的时候就相当于整个窗口都按照这种布局,如选了水平布局,按钮一直在中间,无法拖到其它位置。 解…

华为三层交换机之基本操作

Telnet简介 Telnet是一个应用层协议,可以在Internet上或局域网上使用。它提供了基于文本的远程终端接口,允许用户在本地计算机上登录到远程计算机,然后像在本地计算机上一样使用远程计算机的资源。Telnet客户端和服务器之间的通信是通过Telnet协议进行的…

JDBC学习笔记

一.什么是JDBC 我们操作数据库是用sql语句,那么怎么编写程序来操作数据库呢?这就要学习JDBC。 JDBC就是使用Java中操作关系型数据库的一套API。全称:( Java DataBase Connectivity ) Java 数据库连接。 JDBC更准确的来说是一套接口/API&…