【数据结构】(三)树Tree

 
 

目录

1、基本概念

2、二叉树Binary Tree

3、树、森林与二叉树的转换

4、赫夫曼树Huffman Tree与赫夫曼编码Huffman Coding


1、基本概念

(1)树(Tree)是 n(n ≥\geq 1)个节点的有限集,n = 0时称为空树。

(2)非空树唯一拥有一个根(Root)结点(Node),n > 1时其余结点可分为m(m > 0)个互不相交的有限集并各自成根的子树(Sub Tree)。

(3)结点拥有的子树数目称为结点的度(Degree),度为 0 的结点称为叶结点(Leaf),树的度是树各结点的度的最大值。

(4)结点之间的关系:兄弟(Sibling)——孩子(Child)——双亲(Parent)

(5)结点的层次(Level)从根算起,根为第一层,根的孩子为第二层一直往下,最大层次为深度(Depth)。

(6)如果将树中结点的各子树看成从左至右呈有次序的不能互换的,则称该树为有序树,否则称为无序树。

(7)森林(Forest)是 m(m ≥\geq 0)棵互不相交的树的集合。对树中每个结点而言,其子树的集合即为森林。

(8)树的双亲表示法如下,data数据域存储结点的数据信息;parent指针域存储该结点双亲在数组中的下标,根结点的parent定义为 -1 即不存在该结点。

2、二叉树Binary Tree

(1)每个结点的度 ≤\leq 2,左右有次序之分的树称为二叉树。

(2)二叉树的五种基本形态:空二叉树、只有一个根结点、根结点只有左子树、根结点只有右子树、根结点既有左子树又有右子树。

(3)斜树包含左斜树(所有结点都只有左子树的二叉树)和右斜树(所有结点都只有右子树的二叉树),每一层都只有一个结点,结点个数即二叉斜树的深度(同线性表结构)。

(4)满二叉树:叶结点仅在最下层,非叶非根的结点度数均为 2 的二叉树。

满二叉树

(5)完全二叉树:按层序从上到下从左到右编号结点的位置与满二叉树相同的二叉树,特点有叶结点仅在最下两层,最下层叶子集中在左部连续位置,同结点数的二叉树深度最小。

完全二叉树

(6)二叉树的数学性质有:

(i) 第 i 层至多 2i−12^{i-1} 个结点(i ≥\geq 1)

(ii) 深度为k时至多有 2k2^{k} -1个结点(k ≥\geq1)

(iii) 所有节点的度数之和等于节点总数-1,若叶子结点数为 n0n_{0} ,度为2的结点数为n1n_{1} ,则n0n_{0} = n1n_{1} + 1( 二叉树除了叶结点就是度为1或2的结点)

(iv) 具有n个结点的完全二叉树的深度为[logn]+1

(7)顺序存储结构:一般只用于完全二叉树。

(8)二叉链表:一个数据域+两个指针域。

(9)遍历二叉树:从根节点出发,按某种次序依次唯一地访问每个结点。

(i) 前序遍历:若二叉树为空,则空操作返回,否则先访问根结点,然后遍历左子树, 再遍历右子树

(i) 中序遍历:若二叉树为空,则空操作返回,否则先遍历左子树,然后访问根结点,再遍历右子树

(i) 后序遍历:若二叉树为空,则空操作返回,否则从左到右先叶子后结点遍历访问左右子树,最后根结点

(i) 层序遍历:若二叉树为空,则空操作返回,否则从第一层根结点开始往下从左到右对结点逐个访问。

已知前 + 中序 / 中 + 后序遍历序列,都可以唯一确定一棵二叉树。

3、树、森林与二叉树的转换

(1)树转换为二叉树

(i) 加线;在所有兄弟结点之间加一条连线。

(ii) 去线;每个结点只保留它与第一个孩子结点的连线,删除它与其他孩子结点之间的连线。

(iii) 层次调整:以树的根结点为轴心,将整棵树顺时针旋转一定角度使其结构层次分明。

(2)森林转二叉树

(i) 将每棵树转换为二叉树。

(ii) 第一棵二叉树不动,从第二棵开始依次把后一棵二叉树的根结点作为前一棵根结点的右孩子,连线。

(3)二叉树转换成树

(i) 加线;左孩子的n个右孩子结点都作为此结点的孩子。将该结点与这些右孩子结点用线连接起来。

(ii) 去线;删除原二叉树中所有结点与其右孩子结点的连线。

(4)二叉树转森林

(i) 从根结点开始,若存在右孩子,则删除与右孩子的连线。

(ii) 再查看分离后的二叉树,若存在右孩子,则连线删除,直到所有右孩子连线删除为止。

(iii) 再将分离的二叉树都转换为树即可。

4、赫夫曼树Huffman Tree与赫夫曼编码Huffman Coding

从树一个结点到另一个结点的之间的分支构成两个结点之间的路径,路径分支数目称为路径长度。树的路径长度即从树根到每一结点的路径长度之和,结点间连线相关数称为权(Weight)。树的带权路径长度为树中所有叶子结点的带权路径长度之和,带权路径长度WPL最小的二叉树称为赫夫曼树。

二叉树a的路径长度为1+1+2+2+3+3+4+4=20,WPL = 5×\times1 + 15×\times2 + 40×\times3 + 30×\times4 + 10×\times4 = 315

二叉树b的路径长度为1+2+3+3+2+1+2+2=16,WPL = 5×\times3 +15×\times3 + 40×\times2 + 30×\times2 + 10×\times4 = 220

我们可以得出构造赫夫曼树的算法描述:

(1)根据给定的n个权值{ w1w_{1},w2w_{2},w3w_{3}……,wnw_{n}},构成 n 棵二叉树的集合F={ T1T_{1},T2T_{2},T3T_{3}……,TnT_{n}},其中每棵二叉树T中只有一个带权为w的根结点,其左右子树均为空。

(2)在 F 中选取两棵根结点的权值最小的树作为左右子树构造一棵新的二叉树,并置新的二叉树的根结点的权值为其左右子树上根结点的权值之和。

(3)在 F 中删除这两棵树,同时将新得到的二叉树加入F中。

(4)重复步骤(2)和(3)直到F只含一棵树为止,这棵树便是赫夫曼树。

赫夫曼编码:规定赫夫曼树的左分支代表0,右分支代表1,则从根结点到叶子结点所经过的路径分支组成的0和1的序列便为该结点对应字符的编码,即赫夫曼编码,它在信息存储与传输过程中对信息高效压缩。

假设六个字母的频率为A 27,B 8,C 15,D 15,E 30,F 5,合起来正好是100%,赫夫曼树构造如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/443094.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android悬浮窗实现步骤

最近想做一个悬浮窗秒表的功能,所以看下悬浮窗具体的实现步骤 1、初识WindowManager 实现悬浮窗主要用到的是WindowManager SystemService(Context.WINDOW_SERVICE) public interface WindowManager extends ViewManager {... }WindowManager是接口类&#xff0c…

【CSS】css获取子元素的父元素,即通过子元素选择父元素(使用CSS伪类 :has() :not() )

这里写目录标题 一、:has获取第一个div获取包含 a.active 的 li获取第二个div 二、:not除了类名为active 的 a,其他的a的字体都为18px <div><h1>标题</h1></div><div><ul><li><a href"#" class"active">测…

k8s中调整Pod数量限制的方法

一、介绍 Kubernetes节点每个默认允许最多创建110个pod&#xff0c;有时可能由于主机配置扩容的问题&#xff0c;从而需要修改节点pod运行数量的限制。 即&#xff1a;需要调整Node节点的最大可运行Pod数量。 一般来说&#xff0c;只需要在kubelet启动命令中增加–max-pods参数…

大数据 - Hadoop系列《四》- MapReduce(分布式计算引擎)的核心思想

上一篇&#xff1a; 大数据 - Hadoop系列《三》- MapReduce&#xff08;分布式计算引擎&#xff09;概述-CSDN博客 目录 13.1 MapReduce实例进程 13.2 阶段组成 13.4 概述 13.4.1 &#x1f959;Map阶段&#xff08;映射&#xff09; 13.4.2 &#x1f959;Reduce阶段执行过…

安卓视图基础

目录 设置视图的宽高 设置视图的间隔 设置视图的对齐方式 设置视图的宽高 设置视图的间隔 设置视图的对齐方式 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"a…

【Linux】线程池的简易实现(懒汉模式)

文章目录 前言一、懒汉方式1.普通模式1.线程安全模式 二、源代码1.Task.hpp(要执行的任务)2.ThreadPool.hpp(线程池)3.Main.cpp 前言 线程池: 一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监…

公司如何测试员工对网络钓鱼的反应?

&#x1f4e9; "下午好&#xff0c;文件已经商定。请到下面链接的门户网站下载"。 我们每个人都可能在工作电子邮件中收到此类内容的信息&#xff1a;它可能来自真正的员工&#xff0c;也可能来自公司的信息安全服务部门&#xff0c;该部门决定对您进行检查&#xf…

vue3项目下载@element-plus/icons-vue苦笑不得的乌龙

一、背景 node.js版本&#xff1a;v16.20.1 npm版本&#xff1a;8.19.4 pnpm版本&#xff1a;8.0.0 二、心路历程 pnpm install element-plus/icons-vue 用命令下载element-plus/icons-vue的时候&#xff0c;报错并提醒如图 是&#xff0c;我按照提示执行了&#xff0c;结…

seata Adjusted frame length exceeds 8388608: 539959368,nacos+mysql+seata部署

问题&#xff1a;docker 部署 seata 后出现异常 seata Adjusted frame length exceeds 8388608: 539959368 CSDN上找了一圈都解决不了。github又半天访问不上。后来终于访问上了&#xff0c;发现这是一个很离谱的问题。。。 原因&#xff1a;访问错了端口 seata默认分两个端口…

Google Gemini Pro 国内版

Google Gemini Pro 国内版&#xff1a;【直达链接】 Google Gemini Pro 国内版 能力分类基准测试描述更高分数更好Gemini UltraGPT-4通用MMLU57个主题&#xff08;包括STEM、人文等&#xff09;的问题表示是90.0%86.4%&#xff08;5-shot, 报告&#xff09;推理Big-Bench Hard…

架构设计 高性能带来的复杂度

架构设计的主要目的是为了解决软件系统复杂度带来的问题。 复杂度来源之一就是软件的高性能。 对性能孜孜不倦的追求是整个人类技术不断发展的根本驱动力。例如计算机&#xff0c;从电子管计算机到晶体管计算机再到集成电路计算机&#xff0c;运算性能从每秒几次提升到每秒几…

OpenHarmony(鸿蒙应用开发 - 实战篇 四 ):工程目录结构。

简介 OpenHarmony是由开放原子开源基金会&#xff08;OpenAtom Foundation&#xff09;孵化及运营的开源项目&#xff0c;目标是面向全场景、全连接、全智能时代&#xff0c;基于开源的方式&#xff0c;搭建一个智能终端设备操作系统的框架和平台&#xff0c;促进万物互联产业…