分类预测 | Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别

分类预测 | Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别

目录

    • 分类预测 | Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别。
2.自带数据,多输入,单输出,多分类。图很多、混淆矩阵图、预测效果图等等
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2023及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据私信博主回复Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别
%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/448652.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

秋招面试—浏览器原理篇

浏览器原理篇 1.什么是XSS、CSRF,怎么预防? (1)XSS(跨站脚本攻击):攻击者将恶意代码植入到浏览器页面中,盗取存储在客户端的Cookie; ​ XSS分为:①存储型:论坛发帖、商品评论、用户…

如何通过ETL实现快速同步美团订单信息

一、美团外卖现状 美团作为中国领先的生活服务电子商务平台,其旗下的美团外卖每天承载着大量的订单信息。这些订单信息需要及时入库、清洗和同步,但由于数据量庞大且来源多样化,传统的手动处理方式效率低下,容易出错。比如&#…

Flink CEP(基本概念)

Flink CEP 在Flink的学习过程中,我们已经掌握了从基本原理和核心层的DataStream API到底层的处理函数,再到应用层的Table API和SQL的各种手段,可以应对实际应用开发的各种需求。然而,在实际应用中,还有一类更为复…

Nicn的刷题日常之调整奇数偶数顺序

目录 1.题目描述 2.解题思路 3.解题 1.题目描述 输入一个整数数组,实现一个函数, 来调整该数组中数字的顺序使得数组中所有的奇数位于数组的前半部分, 所有偶数位于数组的后半部分。 2.解题思路 1. 给定两个下标left和right&#xff…

HSRP配置指南

实验大纲 第 1 部分:验证连通性 步骤 1:追踪从 PC-A 到 Web 服务器的路径 步骤 2:追踪从 PC-B 到 Web 服务器的路径 步骤 3:观察当 R3 不可用时,网络的行为 第 2 部分:配置 HSRP 主用和 备用路由器 步…

Interpolator:在Android中方便使用一些常见的CubicBezier贝塞尔曲线动画效果

说明 方便在Android中使用Interpolator一些常见的CubicBezier贝塞尔曲线动画效果。 示意图如下 import android.view.animation.Interpolator import androidx.core.view.animation.PathInterpolatorCompat/*** 参考* android https://yisibl.github.io/cubic-bezier* 实现常…

搭建frp

1.frp 是什么? frp 是一款高性能的反向代理应用,专注于内网穿透。它支持多种协议,包括 TCP、UDP、HTTP、HTTPS 等,并且具备 P2P 通信功能。使用 frp,您可以安全、便捷地将内网服务暴露到公网,通过拥有公网…

51单片机学习笔记 --步进电机驱动说明

文章目录 工作原理代码编写驱动方式全步进驱动半步进驱动微步进驱动 工作原理 工作原理简要说明,和单片机一起配合使用的步进电机多为28BYJ28 五线四相步进电机,配合ULN2003驱动板进行控制,如图所示,对于扭矩、精度要求较高的还有…

[激光原理与应用-73]:数据采集卡 - STM32F107

目录 一、STM32F107 概述 二、STM32F107主要指标 三、STM32F107主要接口信号 四、STM32F107使用场景 五、STM32选型 六、STM32F107 ADC详解 七、STM32F107 ADC与专用ADC芯片AD7606的比较 同步采集 八、AD7606专用ADC转换相比STM32F107内嵌ADC的优势 一、STM32F107 概述…

CSS局限属性contain:优化渲染性能的利器

CSS局限属性contain:优化渲染性能的利器 在网页开发中,优化渲染性能是一个重要的目标。CSS局限属性contain是一个强大的工具,可以帮助我们提高网页的渲染性能。本文将介绍contain属性的基本概念、用法和优势,以及如何使用它来优化…

[Linux 进程(六)] 写时拷贝 - 进程终止

文章目录 1、写时拷贝2、进程终止2.1 进程退出场景2.1.1 退出码2.1.2 错误码错误码 vs 退出码2.1.3 代码异常终止引入 2.2 进程常见退出方法2.2.1 exit函数2.2.2 _exit函数 本片我们主要来讲进程控制,讲之前我们先把写时拷贝理清,然后再开始讲进程控制。…

Vue3页面自适应,表格滚动高度

适用场景:在网页的表格中我们需要获取页面的还可以用的高度来为表格做滚动的时候就需要使用响应高度,可以使用原生的calc来计算,但是calc有个缺陷就是,你要去计算多个盒子的高度,使用下面的代码就可以直接获取当前元素…