【乳腺肿瘤诊断分类及预测】基于Elman神经网络

课题名称:基于Elman神经网络的乳腺肿瘤诊断分类及预测

版本日期:2023-05-15

运行方式: 直接运行Elman0501.m 文件即可

代码获取方式:私信博主或QQ:491052175

模型描述

威斯康辛大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10 个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度〉,这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性的。

算法流程:

1. 数据采集:

将乳腺肿瘤病灶组织的细胞核显微图像的1 0 个量化特征作为网络的输入,良性乳腺肿瘤和恶性乳腺肿瘤这两种类别作为网络的输出。共有乳腺癌数据集共包括569 个病例,其中, 良性357 例, 恶性212 例。随机选取500 组数据作为训练集,剩余69 组作为测试集。每个病例的一组数据包括采样组织中各细胞核的10 个特征量的平均值、标准差和最坏值(各特征的3 个最大数据的平均值)共30 个数据。数据文件中每组数据共分32 个字段,第l个字段为病例编号;第2 个字段为确诊结果, B 为良性, M 为恶性(数据中1为良性,2为恶性);第3~ 12 个字段是该病例肿瘤病灶组织的各细胞核显微图像的10 个量化特征的平均值;第1 3 ~ 22 个字段是相应的标准差;第2 3 ~32 个字段是相应的最坏值。 (打开data.mat文件可以看仿真数据)

2. 网络创建:

数据采集后,利用Matlab自带的神经网络工具箱中的函数newelm()可以构建一个elman神经网络。其调用格式为net=newelm(PR,[S1,S2...,SN1],{},BTF,BLF,PF,IPF,OPF)。其中PR为R组输入元素的最小值和最大值的设定值,R*2维的矩阵,T为SN*Q2的具有SN个元素的输出矩阵;Si为第i层的长度;TFi为第i层的船体函数,默认值:隐含层为'tansig',输出层为'purelin';BTF为反向传播神经网络训练函数,默认值为'trainlm';BLF为反向传播神经网络权值、阈值学习函数,默认值为'learngdm';PF为性能函数,默认值为'mse',IPF为输入处理函数,默认值为:{fixunknowns','removeconstantrows ',' mapminmax'};OPF为输出处理函数,默认值为'{'removeconstantrows ',' mapminmax'}'

3. 网络训练:

网络创建完毕后,若需要,还可以对神经网络的参数进行设置和修改,随机选择训练集的500个病例的数据作为训练数据输入到网络,便可以对网络进行训练。

4. 网络仿真:

网络通过训练后,将测试数据集的69组的10个量化特征数据输入到网络里,便可以得到对应的输出(即分类)。

5. 结果分析

通过对网络仿真结果的分析,可以得到误诊率(包括良心被误诊为恶性及恶性被误诊为良性),从而可以对该方法的可行性进行评价。

特殊说明:
神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值。

Matlab仿真结果:

基于Elman神经网络的乳腺肿瘤诊断分类与预测的仿真结果

训练误差随着迭代次数的变化

基于Elman神经网络的分类预测结果

基于Elman神经网卡的分类预测误差

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/449850.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20240202在WIN10下使用whisper.cpp

20240202在WIN10下使用whisper.cpp 2024/2/2 14:15 【结论:在Windows10下,确认large模式识别7分钟中文视频,需要83.7284 seconds,需要大概1.5分钟!效率太差!】 83.7284/4200.1993533333333333333333333333…

云计算基础(云计算概述)

目录 一、云计算概述 1.1 云计算的概念 1.1.1 云计算解决的问题 1.1.2 云计算的概念 1.1.3 云计算的组成 1.2 云计算主要特征 1.2.1 按需自助服务 1.2.2 泛在接入 1.2.3 资源池化 1.2.4 快速伸缩性 1.2.5 服务可度量 1.3 云计算服务模式 1.3.1 软件即服务(Softwar…

海外IP代理:解锁网络边界的实战利器

文章目录 引言:正文:一、Roxlabs全球IP代理服务概览特点:覆盖范围:住宅IP真实性:性价比:在网络数据采集中的重要性: 二、实战应用案例一:跨境电商竞品分析步骤介绍:代码示…

蓝桥杯备战——12.PCF8591芯片的使用

目录 1.芯片简介2.读写时序3.控制字4.代码封装库5.原理图分析6.使用示例 1.芯片简介 截取自NXP的PCF8591芯片数据手册,我把重点关注部分划出来了,请务必自行阅读一遍数据手册! 2.读写时序 ①器件地址: Bit0决定是读还是写操作&…

mcu短时间内发生多次中断,如何解决中断丢失问题?

问题 嵌入式开发中,如果中断A的处理函数执行时间长,某段时间内,快速来了2个中断A(例如:外部管脚输入信号变化),则会导致第2个中断丢失。 我有几个疑问: 1.目前市面上的芯片,是否支持缓存中断标志…

微信小程序实现吸顶、网格、瀑布流布局

微信小程序开发通常是在webview模式下编写,但是对小程序的渲染性能有一定的追求,就需要使用Skyline模式进行渲染,同时在这种模式下有也有一些特殊的组件,可以轻松的实现想要的效果,本文将介绍在Skyline模式下如何实现吸…

vue全家桶之路由管理Vue-Router

一、前端路由的发展历程 1.认识前端路由 路由其实是网络工程中的一个术语: 在架构一个网络时,非常重要的两个设备就是路由器和交换机。当然,目前在我们生活中路由器也是越来越被大家所熟知,因为我们生活中都会用到路由器&#…

算法练习-左叶子之和(思路+流程图+代码)

难度参考 难度:中等 分类:二叉树 难度与分类由我所参与的培训课程提供,但需要注意的是,难度与分类仅供参考。且所在课程未提供测试平台,故实现代码主要为自行测试的那种,以下内容均为个人笔记,旨…

高级编程 (1)

Linux软件编程: 1.Linux: 操作系统的内核 1.管理CPU 2.管理内存 3.管理硬件设备 4.管理文件系统 5.任务调度 2.Shell: 1.保护Linux内核(用户和Linux内核不直接操作,通过操作Shell,Shell和内核交互) 2.命令解释器 3.Shell命令: …

不是,哎呦~~,你怎么还是不会字母大小写的相互转化啊~

不是,哎呦~~,你怎么还是不会字母大小写的相互转化啊~~~ -------菜,就多练,以前是以前,现在是现在,以前不会不代表之后不会,赶紧看看怎么转化吧!!! 接下来我会…

接口自动化测试详解

🍅 视频学习:文末有免费的配套视频可观看 🍅 关注公众号【互联网杂货铺】,回复 1 ,免费获取软件测试全套资料,资料在手,涨薪更快 引言 与UI相比,接口一旦研发完成,通常变…

【TCP】四次挥手(终止连接)

前言 TCP(传输控制协议)是互联网协议(IP)中的一种重要传输层协议,用于在通信的计算机之间建立可靠的、有序的和错误校验的数据传输。在TCP连接中,数据传输是双向的,因此需要一种机制来开始和结…