【文本到上下文 #8】NLP中的变形金刚:解码游戏规则改变者

一、说明

   欢迎来到我们对不断发展的自然语言处理 (NLP) 领域的探索的第 8 章。在本期中,我们将重点介绍一项重塑 NLP 格局的突破性创新:Transformers。在我们之前对 seq2seq 模型、编码器-解码器框架和注意力机制的讨论之后,我们现在开始了解 Transformer 如何彻底改变语言任务的方法。

   以下是本章的内容:

  1. 变压器模型的出现:了解 Transformer 的起源,以及它们如何标志着 LSTM 和 GRU 等传统递归神经网络模型的重大转变。
  2. 了解 Transformer 架构: 深入了解 Transformer 的复杂架构,探索其独特的组件,例如编码器-解码器模块、自注意力机制、位置编码、前馈网络、层归一化和残差连接。
  3. 与传统模型(LSTM、GRU、seq2seq)的比较:深入了解 Transformer 在处理效率和处理复杂语言任务方面有何不同并超越传统模型。
  4. 变压器的实际应用和影响: 探索这些模型在各种 NLP 应用(如机器翻译、文本摘要、问答系统和情感分析)中的变革性影响。
       加入我们,我们将揭示 Transformer 模型的复杂性和功能,提供理论见解和实际应用的融合

二、变压器模型的出现

   Vaswani 等人在 2017 年的关键论文“Attention is All You Need”中介绍了 Transformer 模型,它标志着与以前占主导地位的基于递归神经网络的模型(如 LSTM(长短期记忆)和 GRU(门控循环单元))的背离。这些模型是许多 NLP 应用程序的支柱,但具有固有的局限性,特别是在处理长序列和并行处理数据方面。

   变压器的出现是为了解决这些限制。它们的架构与它们的前辈有着根本的不同,允许并行处理整个数据序列。这种转变不仅提高了处理效率,而且为处理大规模语言数据开辟了新的途径,这在涉及理解文本中的上下文和关系的任务中尤为关键。

三、了解 Transformer 架构

在这里插入图片描述

   变形金刚的结构既复杂又巧妙。它由几个组件组成,这些组件协同工作以有效地处理语言数据:

  •    编码器和解码器模块
    变压器由多个相互堆叠的编码器和解码器块组成。这种结构与传统的 seq2seq 模型有很大不同,后者通常具有单个编码器和单个解码器。

  •    自注意力机制
    变形金刚的核心创新是自注意力机制。这允许编码器中的每个位置都处理编码器上一层中的所有位置。同样,解码器中的每个位置都可以处理解码器中直到该位置的所有位置以及编码器中的所有位置。这种机制允许模型权衡输入数据不同部分的重要性,从而能够对数据中的上下文和关系进行细致入微的理解。

  •    位置编码
    由于 Transformer 不按顺序处理数据,因此它们缺少有关序列中单词顺序的信息。位置编码被添加到输入嵌入中以提供此位置信息,使模型能够理解单词的序列。

  •    前馈神经网络
    每个编码器和解码器模块都包含一个完全连接的前馈网络。该网络处理注意力层的输出,每层都有自己的参数。

  •    层归一化和残余连接
    这些元素对于稳定和加速 Transformer 模型的训练至关重要。层归一化有助于在将每个子层的输出传递到下一层之前对其进行归一化,残差连接有助于避免训练期间的梯度消失问题。

四、与传统模型(LSTM、GRU、seq2seq)的比较

   Transformers 与 LSTM、GRU 和 seq2seq 模型等传统模型之间的一个关键比较在于它们处理数据的方法。LSTM 和 GRU 模型擅长从序列中捕获信息,但要按顺序捕获信息。这种顺序处理意味着这些模型可能会与文本中的长期依赖关系作斗争,因为信息必须通过序列中的每个步骤。

   Seq2seq 模型通常用于机器翻译和其他类似任务,通常由编码器和解码器组成。虽然有效,但它们也按顺序处理信息,并且可能会遇到文本中的长序列和复杂关系。

   Transformer 通过并行处理整个数据序列来克服这些挑战。这种并行处理能力显著提高了模型的效率及其处理复杂语言任务的能力。变形金刚中的自我注意力机制可以更细致地理解文本中的上下文和关系,这在语言翻译、摘要和问答系统等任务中特别有价值。

五、变压器的实际应用和影响

   Transformer 模型的引入对各种 NLP 任务产生了重大影响。它们能够有效地处理和理解复杂的语言数据,从而在各种应用程序中带来了实质性的改进,包括但不限于:

   机器翻译:Transformers 在机器翻译方面取得了最先进的成果,比以前的模型更有效地处理多种语言和复杂的句子结构。
   文本摘要:他们理解文本中的上下文和关系的能力使 Transformers 在准确总结长文档方面特别有效。
   问答系统:Transformer 提高了系统理解和响应自然语言查询的能力,使其更加准确和高效。
   情感分析:它们增强了理解语言细微差别的能力,从而在文本中进行更准确的情感分析。

六、结论

   在这篇博客中,我们探讨了 Transformer 模型在 NLP 中的变革性影响。这些模型代表了从顺序处理到并行处理语言数据的范式转变,能够更高效地处理复杂任务。

   随着我们在本系列中的推进,下一章将重点关注“BERT 和迁移学习”。我们将深入探讨来自转换器的双向编码器表示 (BERT) 模型如何彻底改变 NLP 中的迁移学习。我们将探讨针对特定任务微调 BERT 的概念及其在各种 NLP 挑战中的影响。这将为我们最终讨论大型语言模型 (LLM) 奠定基础,包括 GPT 变体,以及它们在塑造 NLP 未来中的作用。请继续关注 Transformer 的高级应用及其在语言处理领域的变革力量的深刻旅程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/450009.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE4 C++ UGameInstance实例化

1.创建GameInstance C类 2.在.h添加变量 class 工程名称_API UMyGameInstance : public UGameInstance {GENERATED_BODY()public: //定义了三个公开的变量UMyGameInstance();UPROPERTY(EditAnywhere, BlueprintReadWrite, Category "MyGameInstance")FString Name…

第二代视频换脸工具facefusion

GitHub - facefusion/facefusion: Next generation face swapper and enhancer官方地址 1.环境安装 Windows - FaceFusion Windows Python winget install -e --id Python.Python.3.10 PIP python -m ensurepip --upgrade GIT winget install -e --id Git.Git

Java多线程--JDK5.0新增线程创建方式

文章目录 一、新增方式1:实现Callable接口(1)介绍(2)案例(3)总结对比 二、新增方式2:使用线程池(1)问题与解决思路1、现有问题2、解决思路3、好处 &#xff0…

回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制) 目录 回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制&#xff0…

基于Java SSM框架实现健身后台管理系统项目【项目源码】

基于java的SSM框架实现健身后台管理系统演示 java简介 Java语言是在二十世纪末由Sun公司发布的,而且公开源代码,这一优点吸引了许多世界各地优秀的编程爱好者,也使得他们开发出当时一款又一款经典好玩的小游戏。Java语言是纯面向对象语言之一…

visual studio2022专业版安装步骤

目录 一、Visual studio下载二、创建C#项目——Hello World三、专业版秘钥激活 一、Visual studio下载 首先进入下载官网 先下载2022专业版,等等后面还需要选环境 我勾选了以下几个和c#开发有关的,后面缺什么还可以再安装所有以少勾了问题也不大 然后…

AJAX-URL查询参数

定义:浏览器提供给服务器的额外信息,让服务器返回浏览器想要的数据 http://xxxx.com/xxx/xxx?参数名1值1&参数名2值2 axios语法 使用axios提供的params选项 注意:axios在运行时把参数名和值,会拼接到url?参数名值 axios(…

初始并查集

目录 一.并查集的介绍 二.并查集核心函数介绍 1.查找函数Find() 2.合并函数Union() 一.并查集的介绍 并查集(Disjoint-Set Union,简称并查集)是一种用来管理集合的数据结构。它主要支持两种操作: 1.查找(Find&…

LabVIEW叶片厚度远程监控

LabVIEW叶片厚度远程监控 随着网络技术的高速发展,远程监控广泛应用在各个领域。本文介绍了一种基于LabVIEW的植物叶片厚度远程监控系统,旨在实现对植物生长状况的精准监测和分析。 该系统利用LabVIEW软件开发工具,通过TCP网络协议实现数据…

一文读懂「LM,Large Model」大模型

有时候我们经常说行业大模型,医疗大模型,开源大模型,甚至用「产品大模型」的固定结构去称呼一个模型,例如百度的文心一言大模型,但是文心一言其实是大语言模型,大模型和大语言模型,差别就两个字…

如何手机搜中国大学mooc答案?推荐9个搜题软件和学习工具 #经验分享#其他

以下软件拥有强大的搜索功能,能够快速找到与题目相关的资料和答案,让大学生们更容易理解和掌握知识点。 1.Google翻译 可提供简体中文和另外 100 多种语言之间的互译功能,可让您即时翻译字词、短语和网页内容 Google的免费翻译服务 2.大鱼…

如何在docker中访问电脑上的GPU?如何在docker中使用GPU进行模型训练或者加载调用?

如何在docker中访问电脑上的GPU?如何在docker中使用GPU进行模型训练或者加载调用? 其实使用非常简单,只是一行命令的事,最主要的事配置好驱动和权限。 docker run -it --rm --gpus all ycj520/centos:1.0.0 nvidia-smi先看看 st…