Python—数据可视化Seaborn大全:参数详解与实战案例全解析【第52篇—python:Seaborn大全】

文章目录

  • Seaborn库常用绘图详解与实战
    • 引言
    • 安装与导入
    • 一、散点图
      • 参数说明
      • 实战案例
    • 二、直方图
      • 参数说明
      • 实战案例
    • 三、线性关系图
      • 参数说明
      • 实战案例
    • 四、热力图
      • 参数说明
      • 实战案例
    • 五、分布图
      • 参数说明
      • 实战案例
    • 六、箱线图
      • 参数说明
      • 实战案例
    • 七、联合分布图
      • 参数说明
      • 实战案例
    • 八、小提琴图
      • 参数说明
      • 实战案例
    • 九、成对关系图
      • 参数说明
      • 实战案例
    • 十、自定义调色板
      • 参数说明
      • 实战案例
    • 结语

Seaborn库常用绘图详解与实战

引言

Seaborn 是一个基于 Matplotlib 的数据可视化库,它提供了一些高层次的接口,使得绘图变得更加简单和美观。本文将深入探讨 Seaborn 库的常用绘图功能,包括详细的参数说明和实战案例,帮助读者更好地理解和运用 Seaborn 进行数据可视化。

image-20240203115339576

安装与导入

首先,确保你已经安装了 Seaborn 库。如果没有安装,可以使用以下命令:

pip install seaborn

导入 Seaborn 通常使用以下方式:

import seaborn as sns
import matplotlib.pyplot as plt

一、散点图

散点图是一种常用于展示两个变量之间关系的图表。在 Seaborn 中,我们可以使用 sns.scatterplot() 函数来绘制。

参数说明

  • x:x轴上的数据
  • y:y轴上的数据
  • hue:指定颜色变量
  • style:指定样式变量
  • size:指定点的大小变量

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("iris")# 绘制散点图
sns.scatterplot(x="sepal_length", y="sepal_width", hue="species", style="species", size="petal_length", data=data)# 显示图例
plt.legend()
plt.title("散点图 - 花萼长度与宽度关系")
plt.show()

image-20240203115148706

二、直方图

直方图用于显示数据分布情况,Seaborn 中的 sns.histplot() 函数可以很方便地绘制直方图。

参数说明

  • data:数据集
  • x:x轴上的数据
  • hue:指定颜色变量
  • multiple:当有 hue 参数时,控制多层直方图的显示方式

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("tips")# 绘制直方图
sns.histplot(data=data, x="total_bill", hue="sex", multiple="stack", kde=True)# 显示图例
plt.legend()
plt.title("总消费金额直方图 - 性别分布")
plt.show()

三、线性关系图

Seaborn 提供了 sns.regplot() 函数来绘制线性回归图,展示两个变量之间的线性关系。

参数说明

  • x:x轴上的数据
  • y:y轴上的数据
  • hue:指定颜色变量
  • marker:指定数据点的标记
  • scatter_kws:控制散点图的其他属性

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("tips")# 绘制线性关系图
sns.regplot(data=data, x="total_bill", y="tip", hue="sex", marker="o", scatter_kws={"s": 100})# 显示图例
plt.legend()
plt.title("线性关系图 - 消费金额与小费")
plt.show()

四、热力图

热力图是一种以颜色变化来显示数据矩阵的图表,常用于展示相关性或模式。Seaborn 中的 sns.heatmap() 函数是绘制热力图的利器。

参数说明

  • data:数据集,通常是一个二维矩阵
  • cmap:指定颜色映射
  • annot:在每个单元格显示数值
  • linewidthslinecolor:控制单元格之间的线条宽度和颜色

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("flights")
pivot_data = data.pivot_table(index="month", columns="year", values="passengers")# 绘制热力图
sns.heatmap(data=pivot_data, cmap="YlGnBu", annot=True, linewidths=.5, linecolor="white")plt.title("月度乘客数热力图")
plt.show()

五、分布图

Seaborn 的 sns.distplot() 函数可以绘制直方图并拟合核密度估计,用于展示单变量的分布情况。

参数说明

  • a:绘制分布图的数据
  • hist:是否显示直方图
  • kde:是否显示核密度估计曲线
  • rug:在 x 轴上绘制小的竖线,表示每个观测值的分布

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("iris")# 绘制分布图
sns.distplot(data["sepal_length"], hist=True, kde=True, rug=True)plt.title("花萼长度分布图")
plt.show()

六、箱线图

箱线图是一种展示数据分布的图表,Seaborn 中的 sns.boxplot() 函数可以绘制箱线图。

参数说明

  • xy:数据集中的变量
  • hue:指定颜色变量
  • notch:是否绘制缺口箱线图
  • whis:确定离群值的位置

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("tips")# 绘制箱线图
sns.boxplot(data=data, x="day", y="total_bill", hue="sex", notch=True, whis=1.5)plt.title("每天消费金额箱线图")
plt.show()

七、联合分布图

Seaborn 的 sns.jointplot() 函数可以绘制两个变量之间的联合分布图,同时展示单变量的分布情况。

参数说明

  • xy:绘制联合分布图的两个变量
  • kind:指定联合分布图的类型,可选值包括 “scatter”、“kde”、“hex” 等
  • hue:指定颜色变量
  • joint_kws:控制联合图的其他属性

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("iris")# 绘制联合分布图
sns.jointplot(data=data, x="sepal_length", y="sepal_width", kind="scatter", hue="species")plt.title("花萼长度与宽度联合分布图")
plt.show()

image-20240203115406591

八、小提琴图

小提琴图是箱线图的一种变体,Seaborn 中的 sns.violinplot() 函数可以绘制小提琴图,展示数据的分布情况。

参数说明

  • xy:数据集中的变量
  • hue:指定颜色变量
  • split:当有 hue 参数时,是否拆分小提琴图
  • inner:指定小提琴图内部显示的内容

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("tips")# 绘制小提琴图
sns.violinplot(data=data, x="day", y="total_bill", hue="sex", split=True, inner="quartile")plt.title("每天消费金额小提琴图")
plt.show()

image-20240203115436810

九、成对关系图

Seaborn 的 sns.pairplot() 函数用于绘制数据集中各个数值变量两两之间的散点图,对于多变量数据集的初步探索非常有帮助。

参数说明

  • data:数据集
  • hue:指定颜色变量
  • kind:指定对角线上显示的图表类型

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("iris")# 绘制成对关系图
sns.pairplot(data=data, hue="species", kind="scatter")plt.suptitle("花萼与花瓣特征成对关系图")
plt.show()

十、自定义调色板

Seaborn 允许用户使用自定义调色板,通过 sns.set_palette() 函数可以指定颜色的顺序。

参数说明

  • palette:调色板名称或颜色列表

实战案例

import seaborn as sns
import matplotlib.pyplot as plt# 创建样本数据
data = sns.load_dataset("tips")# 自定义调色板
custom_palette = ["#FF5733", "#33FF57", "#3357FF", "#FF33C2"]
sns.set_palette(custom_palette)# 绘制小提琴图
sns.violinplot(data=data, x="day", y="total_bill", hue="sex", split=True, inner="quartile")plt.title("每天消费金额小提琴图 - 自定义调色板")
plt.show()

结语

本文详细介绍了 Seaborn 库中一系列常用的绘图功能,包括散点图、直方图、线性关系图、热力图、分布图、箱线图、联合分布图、小提琴图、成对关系图以及自定义调色板。通过深入了解每个函数的参数及实战案例,读者应该能够更自如地使用 Seaborn 进行数据可视化。

Seaborn 提供了直观易用的高级接口,使得绘图变得更加简便,同时保持了高度的定制性。无论是初学者还是有一定经验的数据科学家,都可以在 Seaborn 中找到适合自己需求的工具。

在实际工作中,选择合适的图表类型、调整颜色和样式,都是提高数据可视化效果的关键。通过多次实践,读者将更加熟练地运用 Seaborn 进行数据分析,为数据的探索和展示提供更有力的支持。

希望本文能够帮助读者更深入地了解 Seaborn 库,激发大家在数据可视化领域的创造力,为数据科学的发展贡献一份力量。愿每个数据背后的故事都能在绚丽的图表中得以展现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/450932.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AJAX-常用请求方法和数据提交

常用请求方法 请求方法:对服务器资源,要执行的操作 axios请求配置 url:请求的URL网址 method:请求的方法,如果是GET可以省略;不用区分大小写 data:提交数据 axios({url:目标资源地址,method…

ES6-数组的解构赋值

一、数组的解构赋值的规律 - 只要等号两边的模式相同,左边的变量就会被赋予对应的值二、数组的解构赋值的例子讲解 1)简单的示例(完整的解构赋值) 示例 //基本的模式匹配 // a,b,c依次和1,2&#xff0c…

freeswitch对接FunASR实时语音听写

1、镜像启动 通过下述命令拉取并启动FunASR软件包的docker镜像: sudo docker pull \registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-online-cpu-0.1.7 mkdir -p ./funasr-runtime-resources/models sudo docker run -p 10096:10095 -i…

ctfshow web-77

开启环境: 先直接用伪协议获取 flag 位置。 c?><?php $anew DirectoryIterator("glob:///*"); foreach($a as $f) {echo($f->__toString(). );} exit(0); ?> 发现 flag36x.txt 文件。同时根目录下还有 readflag&#xff0c;估计需要调用 readflag 获…

java hutool工具类实现将数据下载到excel

通过hutool工具类&#xff0c;对于excel的操作变得非常简单&#xff0c;上篇介绍的是excel的上传&#xff0c;对excel的操作&#xff0c;核心代码只有一行。本篇的excel的下载&#xff0c;核心数据也不超过两行&#xff0c;简洁方便&#xff0c;特别适合当下的低代码操作。 下载…

Kettle 解决数据同步缓慢及性能效率问题 (数据同步利用时间戳解耦,性能通过配置优化提升90%)

一. 介绍 在数据同步过程中&#xff0c;缓慢的同步速度和低效率的性能往往是令人头痛的问题。本文将介绍如何通过Kettle解决数据同步缓慢及性能效率问题&#xff0c;其中主要涉及数据同步利用时间戳解耦和通过配置优化提升性能高达90%的方法 。 在先前的博客文章中&#xff0c…

LabVIEW风力发电机在线监测

LabVIEW风力发电机在线监测 随着可再生能源的发展&#xff0c;风力发电成为越来越重要的能源形式。设计了一个基于控制器局域网&#xff08;CAN&#xff09;总线和LabVIEW的风力发电机在线监测系统&#xff0c;实现风力发电机的实时监控和故障诊断&#xff0c;以提高风力发电的…

Vue.js设计与实现(霍春阳)

Vue.js设计与实现 (霍春阳) 电子版获取链接&#xff1a;Vue.js设计与实现(霍春阳) 编辑推荐 适读人群 &#xff1a;1.对Vue.js 2/3具有上手经验&#xff0c;且希望进一步理解Vue.js框架设计原理的开发人员&#xff1b; 2.没有使用过Vue.js&#xff0c;但对Vue.js框架设计感兴趣…

个性化DIY制作硬模空心耳机壳使用什么?

制作硬模空心耳机壳需要使用到以下工具和材料&#xff1a; 硬质材料&#xff1a;如金属、塑料、UV树脂胶液等&#xff0c;用于制作耳机壳的硬质部分。模具&#xff1a;用于制作耳机壳的形状和尺寸&#xff0c;可以使用塑料、金属等材料制作模具。连接器和线材&#xff1a;用于…

AES加密原理

AES是一个迭代的、分组密码加密方式&#xff0c;可以使用128 、192和256位密钥。与 公共密钥密码使用密钥对不同&#xff0c;对称密钥密码使用相同的密钥加密和解密数据。 通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结 构&#xff0c;在该循环中重…

vue3项目中如何实现图片的二次处理

在说这个之前&#xff0c;我们要先理解图片的二次处理与图片压缩之间的差异。 图片的二次处理除了对图片进行压缩&#xff0c;还可以进行更多特效的处理&#xff0c;可以对图片进行宽高的重设&#xff0c;图像位置适应性调整&#xff0c;清晰的的控制&#xff0c;背景颜色的添…

90.网游逆向分析与插件开发-游戏窗口化助手-项目需求与需求拆解

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;实现物品使用策略的功能-CSDN博客 项目需求&#xff1a; 在游戏窗口化时&#xff0c;可以在游戏之外弹出一个窗口&#xff0c;可以隐藏或者显示游戏窗口&#xff0c;显示游戏人物的基本状态&#xff…