Python 数据可视化之山脊线图 Ridgeline Plots

文章目录

  • 一、前言
  • 二、主要内容
  • 三、总结

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、前言

JoyPy 是一个基于 matplotlib + pandas 的单功能 Python 包,它的唯一目的是绘制山脊线图 Joyplots(也称为 Ridgeline Plots)。

Why are they called joyplots?

Joyplots 是堆叠的、部分重叠的密度图,就是这么简单。它们是一种很好的绘制数据的方式,可以用来直观比较分布,特别是哪些随着一个维度(比如时间)变化的分布。虽然这并不是一种新技术。

在这里插入图片描述

Github 地址:https://github.com/leotac/joypy

安装 joypy,使用 pip install joypy==0.2.6 就好。

在行为差异、特征工程和预测建模等场景中,了解不同组之间的变量分布差异非常有用。在这些情况下,许多数据科学家更喜欢在单一坐标轴上绘制组级分布图,例如直方图或密度图。然而,当群体较多时,简单的组级分布图可能变得混乱且难以理解。

本文将向您介绍一种紧凑而优雅的数据可视化工具:山脊线图。它以清晰的方式展示不同变量或变量类别的分布差异,帮助我们更好地理解数据中的群体特征,从而获得更深入的洞察和启发。


二、主要内容

使用鸢尾花数据集 iris.csv 做实验,这个数据集如下所示:

在这里插入图片描述

打印特征名称和标签,以及输出标签的 value_counts。

print(f"特征:{list(df.columns)[:-1]}")
print(f"标签:{list(df.columns)[-1]}")特征:['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']
标签:Namedf["Name"].value_counts()Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
Name: Name, dtype: int64
selected_cols = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']fig, ax = plt.subplots(figsize=(10, 6), dpi=200)
my_title = 'Distribution of features in the iris dataset'fig, axes = joyplot(data=df,ax=ax,by='Name',column=selected_cols,xlabelsize=14,ylabelsize=14,grid=True,hist=False,color=['#FF0066', '#9400D3','#002FA7', '#FFB900'],legend=True,title=my_title,alpha=0.86,
)fig.savefig("./Figures/山脊图.png", dpi=300)plt.show()

关键参数说明

  • data:数据帧(DataFrame)、系列(Series)或嵌套集合(Nested collection)。常用 pandas 的 DataFrame
  • ax : matplotlib axes 对象,默认为 None。
  • column:字符串或序列。如果传入参数,将用于将数据限制为列的子集。
  • by:对象,可选项。用于划分不同组的变量分布的特征名称。本次实验中是 “Name”。
  • grid:布尔值,默认是 True。是否显示轴网格线。
  • title:绘制的图表的标题。
  • alpha:设置透明度。
  • xlabels、ylabels:布尔值或列表,默认为 True。
  • xlabelsize:整数,默认值 None。如果指定,则更改 X 轴标签尺寸。
  • xrot:浮点数,默认为 None。旋转 X 轴标签的角度。
  • ylabelsize:整数,默认值 None。如果指定,则更改 Y 轴标签尺寸。
  • yrot:浮点数,默认为 None。旋转 Y 轴标签的角度。
  • figsize : 元组。默认情况下,要创建的图形大小(以 inches 为单位)。
  • color:在绘图中使用的一种或多种颜色。可以是字符串或任何可被 matplotib 解释为颜色的东西。通常传入颜色列表。
  • kwds : 其他绘图关键字参数,将传递给 hist / {/} /kde plot 函数。

实际上,这主要涉及一些 matplotlib 绘图参数。用户还可以直接修改源代码,以调整 X 轴、Y 轴、标题和图例的字体大小,从而使生成的山脊线图更加美观。

山脊线图可视化的效果如下图所示

在这里插入图片描述

正如上图所示,山脊线图不仅展示了每个鸢尾花种类四个特征的分布形状和峰值,还直观地展示了不同种类之间的差异。通过将多个组的分布放置在同一张山脊线图上,并使用不同的颜色或线型进行标识,我们可以轻松比较它们之间的相似性和差异性。


三、总结

山脊线图(Ridgeline Plots),也被称为 Joy Plots,是一种用于展示一个或多个组的数据分布的数据可视化方法。

什么是山脊线图?

  • 山脊线图中,每个组的数据分布通过平滑的密度曲线表示,这些曲线沿垂直轴堆叠排列,从而产生类似山脊的视觉效果。
  • 这种图表特别适用于比较不同组的数据分布情况。

为什么要使用山脊线图?

  • 平滑展示数据分布:与传统的条形图或直方图相比,山脊线图提供了一种更平滑、更直观的方式来展示数据的分布情况。
  • 比较能力:山脊线图非常适合比较多个分布的形状和大小,清晰地展示不同组之间的变化和趋势。
  • 空间效率:通过在单个图中堆叠,山脊线图可以有效地利用空间,避免了创建多个单独的密度图。
  • 美观性:山脊线图在视觉上吸引人,用不同的颜色和样式区分不同的组,使得数据更加生动和直观。
  • 趋势识别:可以轻松识别多个群体数据中的共同模式和异常值。
  • 适用于大量数据集:山脊线图适用于展示大量数据集,而不会显得拥挤或不清晰。

如何制作山脊线图?

  • 山脊线图的制作基于核密度估计(Kernel Density Estimation,KDE),这是一种非参数估计概率密度函数的方法。
  • 使用 JoyPy,一个基于 matplotlib + pandas 的轻量级 Python 包,可以轻松绘制山脊线图 Joy Plot。

📚️ 参考链接:

  • 山脊线图(Ridgeline Plots):一个被低估的数据可视化瑰宝
  • HF.050 | 山脊图、密度图,最全总结实现方法在这里!
  • 沈向洋:致 AI 时代的我们 —— 请不要忽视写作的魅力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/463102.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】结构体变量的赋值细节

C中 结构体变量的赋值与数组在定义时的初始化(赋值)十分相似: ①它们定义在全局区时都会自动初始化为0 ②都是使用大括号的方式赋值 ③大括号中的值都是从前往后一一对应的进行赋值,如果大括号中的值的数量不够的话,后面那些没有被手动赋值的…

Qt程序设计-导出PDF

本文讲解如何实现导出PDF,包含如何使用HTML格式和添加图片。 实例如下: 创建项目,添加两个按钮,并在D盘提前准备好图片。 窗体的头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>#include <QPrinter> #include <QPainter> #i…

第5章 数据库操作

学习目标 了解数据库&#xff0c;能够说出数据库的概念、特点和分类 熟悉Flask-SQLAlchemy的安装&#xff0c;能够在Flask程序中独立安装扩展包Flask-SQLAlchemy 掌握数据库的连接方式&#xff0c;能够通过设置配置项SQLALCHEMY_DATABASE_URI的方式连接数据库 掌握模型的定义…

SPSS基础操作:对数据按照样本观测值进行排序

在整理数据资料或者查看分析结果时&#xff0c;我们通常希望样本观测值能够按照某一变量的大小进行升序或者降序排列&#xff0c;比如我们想按照学生的学习成绩进行排序&#xff0c;按照销售额的大小对各个便利店进行排序等。以本章附带的数据4为例&#xff0c;如果要按照y4体重…

react中hook封装一个table组件 与 useColumns组件

目录 1&#xff1a;react中hook封装一个table组件依赖CommonTable / index.tsx使用组件效果 2&#xff1a;useColumns组件useColumns.tsx使用 1&#xff1a;react中hook封装一个table组件 依赖 cnpm i react-resizable --save cnpm i ahooks cnpm i --save-dev types/react-r…

年假作业day2

1.打印字母图形 #include<stdio.h> #include<string.h> int main(int argc, const char *argv[]) { int i,j; char k; for(i1;i<7;i) { for(j1;j<i;j) { printf("%c",_); } for(j0,…

【小沐学GIS】基于Python绘制三维数字地球Earth(OpenGL)

&#x1f37a;三维数字地球系列相关文章如下&#x1f37a;&#xff1a;1【小沐学GIS】基于C绘制三维数字地球Earth&#xff08;OpenGL、glfw、glut&#xff09;第一期2【小沐学GIS】基于C绘制三维数字地球Earth&#xff08;OpenGL、glfw、glut&#xff09;第二期3【小沐学GIS】…

〖大前端 - ES6篇②〗- let和const

说明&#xff1a;该文属于 大前端全栈架构白宝书专栏&#xff0c;目前阶段免费&#xff0c;如需要项目实战或者是体系化资源&#xff0c;文末名片加V&#xff01;作者&#xff1a;哈哥撩编程&#xff0c;十余年工作经验, 从事过全栈研发、产品经理等工作&#xff0c;目前在公司…

跟着cherno手搓游戏引擎【22】CameraController、Resize

前置&#xff1a; YOTO.h: #pragma once//用于YOTO APP#include "YOTO/Application.h" #include"YOTO/Layer.h" #include "YOTO/Log.h"#include"YOTO/Core/Timestep.h"#include"YOTO/Input.h" #include"YOTO/KeyCod…

解析十六进制雷达数据格式:解析雷达FSPEC数据

以Cat62格式雷达数据为例&#xff0c;十六进制雷达数据部分代码&#xff1a; 3e0120bf7da4ffee0085 base_fspec_processor.h // // Created by qiaowei on 2024-02-03. //#ifndef RADARDATACONTROLLER_BASE_FSPEC_PROCESSOR_H #define RADARDATACONTROLLER_BASE_FSPEC_PROCESS…

深度学习的进展及其在各领域的应用

深度学习&#xff0c;作为人工智能的核心分支&#xff0c;近年来在全球范围内引起了广泛的关注和研究。它通过模拟人脑的学习机制&#xff0c;构建复杂的神经网络结构&#xff0c;从大量数据中学习并提取有用的特征表示&#xff0c;进而解决各种复杂的模式识别问题。 一、深度…

MFC实现遍历系统进程

今天我们来枚举系统中的进程和结束系统中进程。 认识几个API 1&#xff09;CreateToolhelp32Snapshot 用于创建系统快照 HANDLE WINAPI CreateToolhelp32Snapshot( __in DWORD dwFlags, //指定快照中包含的系统内容__in DWORD th32P…