基于 Python 深度学习的电影评论情感分析系统,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12W+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌

🍅文末获取源码联系🍅

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅

Java项目精品实战案例《100套》

Java微信小程序项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人

文章目录

    • 1 简介
    • 2 深度学习的算法研究
      • 卷积神经网络介绍
      • Word2vec算法
      • 语句情感值分析
      • 算法思想
    • 3 基于深度学习的电影评论需求分析
      • 需求设计
      • 其他功能需求分析
    • 4 系统设计
      • 系统的功能模块设计
      • 数据库的设计
    • 5 系统的实现
      • 系统的登录模块设计
      • 系统的首页实现
      • 电影简介的实现
      • 电影评价分析的实现
      • 电影评价情感类别的实现
    • 6 参考文献
    • 7 源码获取:

1 简介

鉴于电影评论的重要性,电影评论的情感数据分析也成为了当下发展非常迅速的一项内容。本次就是利用了flask框架以及深度学习中的word2vac向量模型来进行一款深度学习的电影评论软件开发,通过该软件的开发来更加有效的对众多的影评文本进行情感分析来判断出一部电影评论好与评论不好的比例等内容,从而为电影的评论提供一个综合的汇总评判分析。

python基于深度学习的电影评论情感分析系统

关 键 词深度学习;电影评论;情感分析;flask

文章首发地址:https://it1314.top/article/1256/

2 深度学习的算法研究

卷积神经网络介绍

卷积神经是深度学习中最具代表性的一种算法,这种算法可以通过计算卷积来实现神经网络的发展结构的搭建,该结构所创造的神经网络具有较强的学习能力,可以通过信息输入来实现类结构的转换。卷积神经网络与生理学有着一定的相关性,通过视觉、感知来进行卷积神经网络的内容搭建,通过有监督和无监督的方式来进行学习,均可以实现很好的学习效果。且在隐藏层中能够通过参数的共享来以较小范围的计算实现网络的特征达成。卷积神经网络最初是在图像领域中使用,而在深度学习的框架不断的优化和当下的计算机硬件水平的不断提升下,该技术在众多的领域中都有着很好的应用。

Word2vec算法

Word2vec算法是谷歌公司开发的一种网络概念语言模型,是能够将文本转化为词向量的神经网络模型。这种模式是通过既定的语料库,在该语料库的基础上进行模型优化训练,通过将文本转化为向量模型,来实现有效的算法推演实现。该算法中通常会采用到cbow和skip-gram模型,通过这两种模型来进行相应的向量训练。Cbow模型能够通过结合上下文来进行中间词的概率预测从而实现很好的预测过程的实现。通过skip-gram来进行中间词概率的预测,两样模型通过与神经网络相结合的方式来反复不断的进行初始变量和参数值的更新,指导实现目标的函数值达到最大值后,来进行词量的向量取得。

语句情感值分析

语句是由不同的词语组成的,而在语句的情感值的计算上也是通过词典的计算方式来进行处理的。在针对本次的电影评论的文本分析上,会通过将语句进行分词处理,将语句中的英文、停用词等来进行有效的提出,通过将关键词与情感词典中的信息进行对照,找到句子中的情感词所表达的含义,与情绪态度进行对应,来实现有效的情感值分析,情感词通常会有赞扬、悲哀、贬斥等等,是重要的情绪表达的核心词句。在情感值的计算上,该分析会通过从第一个情感词开始一连串的针对每一个情感词以及修饰词进行情感值的计算,通过不断地循环直到找到所有的情感词来进行不断的更新与总结,从而完成情感值的评价工作。

算法思想

在短文本的评价中,相应的词汇数量较少,且特征明显,情感表达直接,通过情感词典的方式就能够进行极为精准的短文本情感值的判断,但是在情感字典中对于句子的情感指向性相对较弱,有可能会造成判断的错误,特别是在汉语言中,语句中的词语变化多,例如"IOS系统比Android系统好"和"Android系统比IOS系统好"在通过情感值的判断,二者的情感值是一致的,但是实际上两者想要表达的情感是完全相反的。所以通过基于word2vec来进行评论文本词量的分析中,如何对于情感特征的分析是非常重要的一项内容,应当通过加权算法来进行句向量的获取其算法流程如下所示:

图2-1 算法流程图

3 基于深度学习的电影评论需求分析

需求设计

本次通过利用深度学习来实现计算机对于海量的电影评论能够进行有效的自主分析,可以通过对语句的情感值进行判断来实现对语句所表达的情感思想进行确认和表达。此次在需求的设计上首先是需要搭建一款B/S结构的网站系统,使用的开发工具确定为Python语言flask框架。在深度学习的技术选择上,本次使用了word2vec模型来进行情感值的判断和训练的过程搭建与实现。通过此次的设计,能够实现在网站内通过爬取电影评论以及输入评论内容,来让系统进行自动的情感判断,从而将该评论所代表的正面以及负面的情绪进行确认,对于电影评价的好坏可以实现机器自动化的判断实现。

其他功能需求分析

对于电影的情感分析研究,不仅仅是简单的文本分析,而是需要通过语言文本来找寻其背后的发展趋势,本次将以某平台或者某既定的文本库来进行电影的评论采样,通过加入情感分析的方式来是实现对电影的评价和后续的追踪。本次的设计是要通过简单文本确认来找到与电影相关的重要信息,推动电影行业的发展。通过长短不一、情感趋势不同的文本来进行不同的情感倾向的研究,从而能够找到不同的观众对于同一部电影的情感倾向。在情感分析过程中,数据实际是非常重要的一项内容,是对于情感分析的结果有着直接影响的变量。因此在深度的神经网络数据集中,需要样本数据完整、规则性强。通过选取有效的数据样本来进行模型训练才能够得到有效的判断结果。因此要对数据集进行一些内容的简单处理。

4 系统设计

系统的功能模块设计

本次通过以word2vec来进行实现深度学习的模型搭建,通过以pycharm平台来实现数据的整体编程,通过flask框架来完成B/S的网页设计,从而实现计算机在网络上通过电影的评论信息录入来进行评论内容的情感判断。

数据库的设计

本次的数据库设计中,数据库的表格设计如下所示:

表4-1管理员数据库表

表4-2电影数据库表

5 系统的实现

系统的登录模块设计

本次的基于深度学习的电影评论情感分析系统是需要完成用户的登录才能够进入到系统中进行评论分析的,此次设计的分析系统的登录页面如下所示:

图5-1 系统的登录模块

系统的首页实现

当完成登录后,系统的首页以搜索界面为主要展示的内容,在首页中能够在文本框内进行想要获取的电影详情的搜索来快速的查询到与电影相关的信息内容。如下所示:

图5-2 系统首页的实现

电影简介的实现

当输入相关信息后,会有电影的名称、图片、主演、上映时间以及简介等多种内容在该页面进行呈现,并且能够通过点击"立即播放"实现在线的电影播放功能,如下图所示:

图5-3 电影简介的实现

电影评价分析的实现

在电影简介界面中点击"下一页"能够看到当前用户对于该电影的评价信息,有积极、消极、一般等内容,能够通过环形图来进行相应评分占比的展示。当在点击下一页时,会有具体的热门点评的显示,通过"积极"、“消极”、"一般"三个选项来进行评价的划分,有用户对于电影的评分、点赞数、留言时间等内容的显示。如下图所示:

图5-4 电影评价分析的实现

电影评价情感类别的实现

在电影评价的菜单中,管理员能够看到现有的用户对于电影的全部评价信息,系统会根据输入的评价内容来进行情感类别的判断,并且存储如数据库中,如下图所示:

图5-5 电影评价情感分析类别的实现

6 参考文献

[1]
张爱军,杨泽斌.自动化机器学习中的超参调优方法[J].中国科学:数学,2020,50(05):695-710.

[2]
李磊,陈向东,丁星,李皋,陈一健.基于图像处理与机器学习的岩土湿度检测系统[J].传感器与
微系统,2020,39(06):83-85+88.

[3]
邓玉睿,周勇,从伟,程旭东,祁智慧,唐芳.基于朴素贝叶斯算法的模型研究[J].中国粮油学
报,2019,34(S2):35-38.

[4] 邹 强 , 田 颖 , 李 红 松 , 秦顺顺 . 基 于 支 持 向 量 机 的 方 法
[J]. 北 京 交 通 大 学 学 报,2020,44(01):84-90.

李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(09):2508-2515+2565.

7 源码获取:

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅

Java项目精品实战案例《200套》

Java微信小程序项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/467881.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

13. 【Linux教程】移动文件和目录

移动文件和目录 前面小节介绍了如何创建文件和目录、删除文件和目录,本小节介绍如何使用 mv 命令移动文件和目录。 1. 移动文件或目录至另外一个目录下 可以使用 mv file_name 路径 这种格式,移动文件至其他目录下,后面跟的路径可以是相对路…

政安晨:【详细解析】【用TensorFlow从头实现】一个机器学习的神经网络小示例【解构演绎】

准备工作 咱们将通过这篇文章反复咀嚼我原来文章里提到的那篇《神经网络小实例》,大家可以先看看,比如做些环境准备等等(这是我的这篇文章的链接): 政安晨的机器学习笔记——基于Anaconda安装TensorFlow并尝试一个神…

图像处理之《神经网络模型的通用隐写框架》论文阅读

一、文章摘要 在本文中,我们提出了一个通用的隐写框架,用于神经网络实现隐蔽通信。首先,我们设计了一种基线隐写方法,在网络训练过程中将秘密数据嵌入到给定神经网络(封面网络)的卷积层中。对于包含秘密数据的网络(隐写网络)&…

python 基础知识点(蓝桥杯python科目个人复习计划40)

今日复习内容:矩阵乘法,高斯消元 哈哈,我来干回老本行,复习点儿数学类专业学的东西 因为电脑上制作费时间,所以我直接用我的《高等代数》和《数值分析》笔记。 一.矩阵乘法 例题1:矩阵相乘 题目描述&am…

ElasticSearch级查询Query DSL上

目录 ES高级查询Query DSL match_all 返回源数据_source 返回指定条数size 分页查询from&size 指定字段排序sort 术语级别查询 Term query术语查询 Terms Query多术语查询 exists query ids query range query范围查询 prefix query前缀查询 wildcard query通…

蓝桥杯嵌入式第10届真题(完成) STM32G431

蓝桥杯嵌入式第10届真题(完成) STM32G431 题目 main.c /* USER CODE BEGIN Header */ /********************************************************************************* file : main.c* brief : Main program body********************************…

家政小程序系统源码开发:引领智能生活新篇章

随着科技的飞速发展,小程序作为一种便捷的应用形态,已经深入到我们生活的方方面面。尤其在家庭服务领域,家政小程序的出现为人们带来了前所未有的便利。它不仅简化了家政服务的流程,提升了服务质量,还为家政服务行业注…

Linux_线程

线程与进程 多级页表 线程控制 线程互斥 线程同步 生产者消费者模型 常见概念 下面选取32位系统举例。 一.线程与进程 上图是曾经我们认为进程所占用的资源的集合。 1.1 线程概念 线程是一个执行分支,执行粒度比进程细,调度成本比进程低线程是cpu…

题目:1.可凑成的最大花束数(蓝桥OJ 3344)

问题描述: 解题思路: 官方: 总结:使用二分枚举符合条件的x,不能用贪心(又大到小依次枚举,会导致超时,因为数据太大(1e9以上,超过规定的1e8)&#…

MYSQL笔记:简单的SQL操作和select查询

MYSQL笔记:简单的SQL操作和select查询 文章目录 MYSQL笔记:简单的SQL操作和select查询结构化查询语句SQL库操作表操作CRUD操作单表查询select 查询例子 分页查询与limitlimit 只是对结果条数有限制还是会提高查询效率? order bygroup by多表连…

java之jvm详解

JVM内存结构 程序计数器 Program Counter Register程序计数器(寄存器) 程序计数器在物理层上是通过寄存器实现的 作用:记住下一条jvm指令的执行地址特点 是线程私有的(每个线程都有属于自己的程序计数器)不会存在内存溢出 虚拟机栈(默认大小为1024kb) 每个线…

Rust入门:如何在windows + vscode中关闭程序codelldb.exe

在windows中用vscode单步调试rust程序的时候,发现无论是按下stop键,还是运行完程序,调试器codelldb.exe一直霸占着主程序不退出,如果此时对代码进行修改,后续就没法再编译调试了。 目前我也不知道要怎么处理这个事&am…