【RL】Bellman Optimality Equation(贝尔曼最优等式)

Lecture3: Optimal Policy and Bellman Optimality Equation

Definition of optimal policy

state value可以被用来去评估policy的好坏,如果:
v π 1 ( s ) ≥ v π 2 ( s ) for all  s ∈ S v_{\pi_1}(s) \ge v_{\pi_2}(s) \;\;\;\;\; \text{for all } s \in S vπ1(s)vπ2(s)for all sS
那么, π 1 \pi_1 π1 π 2 \pi_2 π2更优。

定义

如果 v π ∗ ( s ) > v π v_{\pi^*}(s) > v_{\pi} vπ(s)>vπ对所有的 s s s都成立,那么policy π \pi π就是最优的,标记为 π ∗ \pi^* π

BOE: Introduction

回顾元素形式的Bellman等式:
v ( s ) = ∑ a π ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v ( s ′ ) ) ∀ s ∈ S v(s)=\sum_a \pi(a | s) \left( \sum_rp(r | s, a) + \gamma \sum_{s'}p(s' | s, a)v(s') \right)\;\;\;\;\; \forall s \in S v(s)=aπ(as)(rp(rs,a)+γsp(ss,a)v(s))sS
则,元素形式的Bellman最优等式(Bellman Optimiality Equation)为:
v ( s ) = m a x π ∑ a π ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v ( s ′ ) ) ∀ s ∈ S = m a x π ∑ a π ( a ∣ s ) q ( s ∣ a ) s ∈ S \begin{align*} v(s)&=max_{\pi} \sum_a \pi(a | s) \left( \sum_rp(r | s, a) + \gamma \sum_{s'}p(s' | s,a) v(s') \right)\;\;\;\;\; \forall s \in S \\ &=max_{\pi}\sum_a \pi(a | s)q(s | a) \;\;\;\;\; s \in S \end{align*} v(s)=maxπaπ(as)(rp(rs,a)+γsp(ss,a)v(s))sS=maxπaπ(as)q(sa)sS
其中:

  • p ( r ∣ s , a ) p(r | s, a) p(rs,a) p ( s ′ ∣ s , a ) p(s'| s, a) p(ss,a)是已知的
  • v ( s ) v(s) v(s) v ( s ′ ) v(s') v(s)是未知需要计算的

矩阵形式的Bellman最优等式:
v = m a x π ( r π + γ P π v ) \mathbf{v} = max_{\pi}(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}) v=maxπ(rπ+γPπv)
其中:
[ r π ] s : = ∑ a π ( a ∣ s ) ∑ r p ( r ∣ s , a ) r [ P π ] s , s ′ = p ( s ′ ∣ s ) : = ∑ a π ( a ∣ s ) ∑ s ′ p ( s ′ ∣ s , a ) [\mathbf{r}_{\pi}]_s := \sum_a \pi(a | s)\sum_rp(r | s, a)r \\ [\mathbf{P}_{\pi}]_{s, s'} = p(s' | s) := \sum_a \pi(a | s) \sum_{s'} p(s' | s, a) [rπ]s:=aπ(as)rp(rs,a)r[Pπ]s,s=p(ss):=aπ(as)sp(ss,a)

BOE: Maximization on the right-hand side

考虑元素形式Bellman最优等式:
v ( s ) = m a x π ∑ a π ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v ( s ′ ) ) ∀ s ∈ S = m a x π ∑ a π ( a ∣ s ) q ( s ∣ a ) s ∈ S \begin{align*} v(s)&=max_{\pi} \sum_a \pi(a | s) \left( \sum_rp(r | s, a) + \gamma \sum_{s'}p(s' | s,a) v(s') \right)\;\;\;\;\; \forall s \in S \\ &=max_{\pi}\sum_a \pi(a | s)q(s | a) \;\;\;\;\; s \in S \end{align*} v(s)=maxπaπ(as)(rp(rs,a)+γsp(ss,a)v(s))sS=maxπaπ(as)q(sa)sS
因为 ∑ a π ( a ∣ s ) = 1 \sum_a \pi(a | s) = 1 aπ(as)=1,可得:
m a x π ∑ a π ( a ∣ s ) q ( s ∣ a ) = m a x a ∈ A ( s ) q ( s , a ) max_{\pi} \sum_a \pi(a | s)q(s | a) =max_{a \in \mathcal{A}(s)} q(s, a) maxπaπ(as)q(sa)=maxaA(s)q(s,a)
当策略最优时:
π ( a ∣ s ) = { 1 a = a ∗ 0 a ≠ a ∗ \pi(a | s) = \left\{\begin{matrix} 1 & a = a^*\\ 0 & a \ne a^* \end{matrix}\right. π(as)={10a=aa=a
其中: a ∗ = argmax a q ( s , a ) a^* = \text{argmax}_a q(s, a) a=argmaxaq(s,a)

BOE: Rewtite as v = f ( v ) v=f(v) v=f(v)

考虑矩阵形式Bellman最优等式:
v = m a x π ( r π + γ P π v ) \mathbf{v} = max_{\pi}(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}) v=maxπ(rπ+γPπv)
使:
f ( v ) : = m a x π ( r π + γ P π v ) f(\mathbf{v}) := max_{\pi}(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}) f(v):=maxπ(rπ+γPπv)
那么,Bellman最优等式就变为:
v = f ( v ) \mathbf{v} = f(\mathbf{v}) v=f(v)
其中:
[ f ( v ) ] s = m a x π ∑ a π ( a ∣ s ) q ( s , a ) s ∈ S [f(v)]_s = max_{\pi} \sum_a \pi(a | s)q(s, a) \;\;\;\;\; s\in S [f(v)]s=maxπaπ(as)q(s,a)sS

Contraction mapping theorem

Fixed Point:对于 x ∈ X x \in X xX,如果其为 f : X → X f: X \rightarrow X f:XX的fixed point(不动点),那么其满足:
f ( x ) = x f(x)=x f(x)=x
Contraction Mapping(or Contraction Function) f f f是contraction mapping,如果:
∥ f ( x 1 ) − f ( x 2 ) ∥ ≤ γ ∥ x 1 − x 2 ∥ \| f(x_1) - f(x_2) \| \le \gamma \| x_1 - x_2 \| f(x1)f(x2)γx1x2
其中, γ ∈ ( 0 , 1 ) \gamma \in (0, 1) γ(0,1)

  • γ \gamma γ必须严格小于1
  • ∥ ⋅ ∥ \| \cdot\| 可以是任何向量形式

对于任何满足 x = f ( x ) x = f(x) x=f(x)的等式形式,如果 f f f是contractnon mapping,那么:

  • Existence:存在一个fixed point,满足 f ( x ∗ ) = x ∗ f(x^*) = x^* f(x)=x
  • Uniquencess:fixed point x ∗ x^* x是唯一的
  • Algorithm:考虑序列 { x k } \{ x_k \} {xk},其中 x k + 1 = f ( x k ) x_{k+1}=f(x_k) xk+1=f(xk),那么当 k → ∞ k \rightarrow \infty k x k → x ∗ x_k \rightarrow x^* xkx。而且,收敛速度时指数级。

例:

  • x = 0.5 x x=0.5x x=0.5x,其中 f ( x ) = 0.5 x f(x)=0.5x f(x)=0.5x而且 x ∈ R x \in \mathbb{R} xR

    x ∗ = 0 x^*=0 x=0是唯一的fixed point。其可以被迭代求解为:
    x k + 1 = 0.5 x k x_{k+1}=0.5x_k xk+1=0.5xk

  • x = A x x=Ax x=Ax,其中 f ( x ) = A x f(x)=Ax f(x)=Ax并且 x ∈ R n x \in \mathbb{R}^n xRn ∥ A ∥ < 1 \|A\| <1 A<1

    x ∗ = 0 x^*=0 x=0是唯一的fixed point。其可以被迭代求解为:
    x k + 1 = A x k x_{k+1} = Ax_k xk+1=Axk

BOE: Solution

考虑Bellman最优等式:
v = f ( v ) = m a x π ( r + γ P π v ) \mathbf{v} = f(\mathbf{v}) = max_{\pi}(r + \gamma \mathbf{P}_{\pi}\mathbf{v}) v=f(v)=maxπ(r+γPπv)
Contraction Property f ( v ) f(v) f(v)是contraction mapping 满足:
∥ f ( v 1 ) − f ( v 2 ) ∥ ≤ γ ∥ v 1 − v 2 ∥ \|f(v_1) - f(v_2)\| \le \gamma \|v_1 - v_2\| f(v1)f(v2)γv1v2
其中, γ \gamma γ是discount rate。

对于BOE v = f ( v ) = m a x π ( r π + γ P π v ) \mathbf{v} = f(\mathbf{v}) = max_{\pi}(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}) v=f(v)=maxπ(rπ+γPπv),其总存在一个最优解 v ∗ \mathbf{v}^* v,而且 v ∗ \mathbf{v}^* v是唯一的。最优解可以被迭代求解为:
v k + 1 = f ( v k ) = m a x π ( r π + γ P π v k ) \mathbf{v}_{k+1}=f(\mathbf{v}_k) = max_{\pi}(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}\mathbf{v}_k) vk+1=f(vk)=maxπ(rπ+γPπvk)
给定任何初始猜测 v 0 v^0 v0,该序列 v k {v_k} vk都会以指数速度快速收敛到 v ∗ v^* v。 收敛速度由 γ \gamma γ决定。

迭代算法:

对于矩阵形式的Bellman最优等式:
v k + 1 = f ( v k ) = m a x π ( r π + γ P π v k ) \mathbf{v}_{k+1}=f(\mathbf{v}_k) = max_{\pi}(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}\mathbf{v}_k) vk+1=f(vk)=maxπ(rπ+γPπvk)
其元素形式为:
v k + 1 ( s ) = m a x π π ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v k ( s ′ ) ) = m a x π ∑ a π ( a ∣ s ) q k ( s , a ) = m a x a q k ( s , a ) \begin{align*} v_{k+1}(s)&=max_{\pi} \pi(a|s) \left( \sum_r p(r | s, a) + \gamma \sum_{s'} p(s' | s, a)v_k(s') \right)\\ &=max_{\pi} \sum_a \pi(a|s)q_k(s, a)\\ &=max_a q_k(s, a) \end{align*} vk+1(s)=maxππ(as)(rp(rs,a)+γsp(ss,a)vk(s))=maxπaπ(as)qk(s,a)=maxaqk(s,a)
Procedure Summary

  • 对于任何 s s s,其最近估计值为 v k ( s ) v_k(s) vk(s)

  • 对于任何 a ∈ A ( s ) a \in \mathcal{A}(s) aA(s),计算 q k ( s , a ) = ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v k ( s ′ ) q_k(s, a) = \sum_r p(r | s, a) + \gamma \sum_{s'} p(s' | s, a)v_k(s') qk(s,a)=rp(rs,a)+γsp(ss,a)vk(s)

  • s s s计算policy π k + 1 \pi_{k+1} πk+1
    π k + 1 ( a ∣ s ) = { 1 a = a k ∗ ( s ) 0 a ≠ a k ∗ ( s ) \pi_{k+1}(a|s)=\left\{\begin{matrix} 1 & a = a^*_k(s)\\ 0 & a \ne a^*_k(s) \end{matrix}\right. πk+1(as)={10a=ak(s)a=ak(s)
    其中, a k ∗ ( s ) = argmax a q k ( s , a ) a^*_k(s) = \text{argmax}_a q_k(s, a) ak(s)=argmaxaqk(s,a)

  • 计算 v k + 1 ( s ) = max a q k ( s , a ) v_{k+1}(s) = \text{max}_a q_k(s, a) vk+1(s)=maxaqk(s,a)

例:

对于下图:

在这里插入图片描述

action: a ℓ , a 0 , a r a_{\ell},a_0,a_r a,a0,ar分别代表向左、保持不变,向右。

reward:进入target area:+1,试图突破边界:-1。

q ( s , a ) q(s, a) q(s,a)值表:

在这里插入图片描述

考虑 γ = 0.9 \gamma=0.9 γ=0.9

算法目标是发现 v ∗ ( s i ) v^*(s_i) v(si) π ∗ \pi^* π

k=0:

v-value: v 0 ( s 1 ) = v 0 ( s 2 ) = v 0 ( s 3 ) = 0 v_0(s_1)=v_0(s_2)=v_0(s_3)=0 v0(s1)=v0(s2)=v0(s3)=0

q-value:

在这里插入图片描述

greedy policy:
π ( a r ∣ s 1 ) = 1 π ( a 0 ∣ s 2 ) = 1 π ( a ℓ ∣ s 3 ) = 1 \pi(a_r | s_1) = 1\\ \pi(a_0 | s_2) = 1\\ \pi(a_{\ell} | s_3) = 1 π(ars1)=1π(a0s2)=1π(as3)=1

BOE: Optimality

假设 v ∗ v^* v是Bellman最优等式的解,其满足:
v ∗ = m a x π ( r π + γ P π v ∗ ) \mathbf{v}^* = max_{\pi}(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}^*) v=maxπ(rπ+γPπv)
假设:
π ∗ = argmax π ( r π + γ P π v ∗ ) \mathbf{\pi}^* = \text{argmax}_{\pi} (\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}\mathbf{v}^*) π=argmaxπ(rπ+γPπv)
那么:
v ∗ = r π − γ P π ∗ v ∗ \mathbf{v}^* = \mathbf{r}_{\pi} - \gamma \mathbf{P}_{\pi^*}\mathbf{v}^* v=rπγPπv
因此, π ∗ \pi^* π是策略, v ∗ = v π ∗ v^*=v_{\pi}^* v=vπ是对应的state value。

Theorem (Policy Optimality)

假设 $v^* $是 v = m a x π ( r π + γ P π v ) v = max\pi(r_\pi + \gamma P_\pi v) v=maxπ(rπ+γPπv)的唯一解, v π v_\pi vπ 是对于任何给定policy π \pi π 满足 v π = r π + γ P π v π v_\pi = r_\pi + \gamma P_\pi v_\pi vπ=rπ+γPπvπ 的state value函数,则:
v ∗ ≥ v π ∀ π v^* \ge v_{\pi} \;\;\;\;\; \forall \pi vvππ
Theorem (Greedy Optimal Policy)

对于任何 s ∈ S s \in S sS,确定的greedy policy是:
π ∗ ( a ∣ s ) = { 1 a = a ∗ ( s ) 0 a ≠ a ∗ ( s ) ( 1 ) \pi^*(a| s)= \left\{\begin{matrix} 1 & a = a^*(s) \\ 0 & a \ne a^*(s) \end{matrix}\right. \;\;\;\;\; (1) π(as)={10a=a(s)a=a(s)(1)
是BOE求得的最优policy。其中:
a ∗ ( s ) = argmax a q ∗ ( a , s ) a^*(s) = \text{argmax}_a q^*(a, s) a(s)=argmaxaq(a,s)
其中 q ∗ ( s , a ) : = ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v ∗ ( s ′ ) q^*(s,a) := \sum_r p(r | s, a) + \gamma \sum_{s'} p(s' | s, a) v^*(s') q(s,a):=rp(rs,a)+γsp(ss,a)v(s)

Analyzing optimal policies

考虑BOE等式:
v ( s ) = m a x π π ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v k ( s ′ ) ) v(s)=max_{\pi} \pi(a|s) \left( \sum_r p(r | s, a) + \gamma \sum_{s'} p(s' | s, a)v_k(s') \right) v(s)=maxππ(as)(rp(rs,a)+γsp(ss,a)vk(s))
有三个要素:

  • Reward: r r r
  • System model: p ( s ′ ∣ s , a ) p(s' | s, a) p(ss,a) p ( r ∣ s , a ) p(r | s, a) p(rs,a)
  • Discount rate: γ \gamma γ
  • v ( s ) , v ( s ′ ) , π ( a ∣ s ) v(s),v(s'),\pi(a|s) v(s),v(s),π(as)是未知需要计算的。

接下来,通过改变 r r r γ \gamma γ来讨论optimal policy的变化。

通过求解BOE得到最优policy和对应的最优state value。

在这里插入图片描述

敢于冒险的最优策略:进入forbidden area!

改变 γ = 0.9 \gamma = 0.9 γ=0.9 γ = 0.5 \gamma = 0.5 γ=0.5

在这里插入图片描述

最优policy变得短视! 避开所有forbidden area!

改变 γ = 0 \gamma=0 γ=0

在这里插入图片描述

最优policy变得极其短视! 另外,选择立即reward最大的行动! 达不到目标!

如果加大进入forbidden area的处罚力度(改变 r f o r b i d d e n = − 1 r_{forbidden=-1} rforbidden=1 r f o r b i d d e n = − 10 r_{forbidden}=-10 rforbidden=10

在这里插入图片描述

最优的政策也会避开forbidden area。

Theorem (Optimal Policy Invariance)

考虑一个马尔可夫决策过程,其中 v ∗ ∈ R ∣ S ∣ v^* \in \mathbb{R}^{|S|} vRS作为满足 v ∗ = m a x π ( r π + γ P π v ∗ ) v* = max_\pi(r_\pi + γP_\pi v^*) v=maxπ(rπ+γPπv)的最优状态值。如果每个奖励 r r r通过仿射变换变为 a r + b ar + b ar+b,其中 a , b ∈ R a,b \in \mathbb{R} a,bR a ≠ 0 a \ne 0 a=0,则对应的最优状态值 v ′ v' v也是 v ∗ v^* v的仿射变换。
v ′ = a v ∗ + b 1 − γ 1 v' = a v^* + \frac{b}{1 - \gamma} \mathbf{1} v=av+1γb1
其中, γ ∈ ( 0 , 1 ) \gamma \in (0, 1) γ(0,1)是discount rate, 1 = [ 1 , . . . , 1 ] T \mathbb{1} = [1, ..., 1]^T 1=[1,...,1]T。因此,最优policy对于reward信号的仿射变换是不变的。

关于无意义绕路:

在这里插入图片描述

在这里插入图片描述

走弯路不施加惩罚也可以避免优化过程中走弯路。

discount rate!

Policy ( a ) : return = 1 + γ 1 + γ 2 1 + ⋯ = 1 / ( 1 − γ ) = 10 \text{Policy}(a): \text{return}=1 + \gamma 1 + \gamma^21 + \cdots = 1 / (1 - \gamma ) = 10 Policy(a):return=1+γ1+γ21+=1/(1γ)=10

Policy(b) : return = 0 + γ 0 + γ 2 0 + ⋯ = γ 2 / ( 1 − γ ) = 8.1 \text{Policy(b)}: \text{return} = 0 + \gamma0 + \gamma^2 0 + \cdots = \gamma^2 / (1 - \gamma) = 8.1 Policy(b):return=0+γ0+γ20+=γ2/(1γ)=8.1




以上内容为B站西湖大学智能无人系统 强化学习的数学原理 公开课笔记。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/469088.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c++Qt网络操作

1、基础概念 1.1 TCP/UDP TCP 是一种面向连接的传输层协议&#xff0c;它能提供高可靠性通信(即数据无误、数据无丢失、 数据无失序、数据无重复到达的通信) 适用情况&#xff1a; 1.SN/QQ等即时通讯软件的用户登录账户管理相关的功能通常采用TCP协议 2、适合于对传输质量要求较…

力扣hot1--哈希

推荐一个博客&#xff1a; 一文看懂哈希表并学会使用C STL 中的哈希表_哈希表end函数-CSDN博客 哈希做法&#xff1a; 我们将nums[i]记为key&#xff0c;将i记为value。 判断target-nums[i]是否在哈希表中&#xff0c;如果在说明这两个值之和为target&#xff0c;那么返回这两…

AI绘画作品的展示和变现-2

4.7 制作红包封面 中国的节日和传统文化元素仍然可以成为创作者们的创作灵感&#xff0c;创造出更多的变现机会。比如元宵节&#xff0c;可以制作大型元宵图案&#xff0c;进行引流并卖出元宵。 而春分、谷雨等节气也可以成为创作的灵感来源&#xff0c;创作出与之相关的图案&…

每日一题——数字翻转

题目; 这道题看似是很简单的回文数 实则就是很简单的回文数 但是需要注意的一点是负数 可以在开头就进行判断&#xff0c;如果N<0的话就令N-N&#xff0c;将所有数都转成正数就好办了 上代码&#xff1a; #include <iostream> #include<string> #include<…

LeetCode Python - 15.三数之和

目录 题目答案运行结果 题目 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可…

ELAdmin 部署

后端部署 按需修改 application-prod.yml 例如验证码方式、登录状态到期时间等等。 修改完成后打好 Jar 包 执行完成后会生成最终可执行的 jar。JPA版本是 2.6&#xff0c;MyBatis 版本是 1.1。 启动命令 nohup java -jar eladmin-system-2.6.jar --spring.profiles.active…

书生浦语大模型实战营-课程笔记(1)

模型应用过程&#xff0c;大致还是了解的。和之前实习做CV项目的时候比起来&#xff0c;多了智能体这个环节。智能体是个啥&#xff1f; 类似上张图&#xff0c;智能体不太清楚。感觉是偏应用而不是模型的东西&#xff1f; 数据集类型很多&#xff0c;有文本/图片/视频。所以…

Autosar Can模块介绍

简单介绍下&#xff0c;CAN控制器模块处于MCAL,为控制抽象层&#xff0c;这部分主要配置can外设的时钟、波特率、过滤器和邮箱&#xff0c;因芯片的不同&#xff0c;可能会增加一些新的配置项。需要解释下&#xff0c;什么是邮箱&#xff0c;邮箱就是一片报文缓存空间&#xff…

代码随想录day22--回溯的应用1

LeetCode216.组合总和III 题目描述&#xff1a; 找出所有相加之和为 n 的 k 个数的组合&#xff0c;且满足下列条件&#xff1a; 只使用数字1到9每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次&#xff0c;组合可以以任何顺序返回。…

C语言每日一题(56)平衡二叉树

力扣网 110 平衡二叉树 题目描述 给定一个二叉树&#xff0c;判断它是否是高度平衡的二叉树。 本题中&#xff0c;一棵高度平衡二叉树定义为&#xff1a; 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,…

HotCoin Global: 澳洲双牌照持有平台,坚守全球合规之路

前言&#xff1a; 加密交易平台的合规性不仅是相关法规遵守的问题&#xff0c;更是市场透明度和用户公平性的关键。为促使加密市场的交易活动有规范、有秩序地进行&#xff0c;确保加密投资者的资产与交易安全&#xff0c;部分国家明确对加密资产的交易和经营活动进行监督及管…

代码随想录刷题笔记 DAY 25 | 组合问题 No.77 | 组合求和III No.216 | 电话号码的字母组合 No.17

文章目录 Day 2501. 组合问题&#xff08;No. 77&#xff09;2.1 题目2.2 笔记2.3 代码 02. 组合求和III&#xff08;No. 216&#xff09;2.1 题目2.2 笔记2.3 代码 03. 电话号码的字母组合&#xff08;No. 17&#xff09;3.1 题目3.2 笔记3.3 代码3.4 补充 Day 25 01. 组合问…