【lesson53】线程控制

文章目录

  • 线程控制

线程控制

线程创建
代码:
在这里插入图片描述
运行代码:
在这里插入图片描述
强调一点,线程和进程不一样,进程有父进程的概念,但在线程组里面,所有的线程都是对等关系。
在这里插入图片描述
错误检查:

  • 传统的一些函数是,成功返回0,失败返回-1,并且对全局变量errno赋值以指示错误。
  • pthreads函数出错时不会设置全局变量errno(而大部分其他POSIX函数会这样做)。而是将错误代码通过返回值返回
  • pthreads同样也提供了线程内的errno变量,以支持其它使用errno的代码。对于pthreads函数的错误,建议通过返回值业判定,因为读取返回值要比读取线程内的errno变量的开销更小

进程ID和线程ID
在Linux中,目前的线程实现是Native POSIX Thread Libaray,简称NPTL。在这种实现下,线程又被称为轻量级进程(Light Weighted Process),每一个用户态的线程,在内核中都对应一个调度实体,也拥有自己的进程描述符(task_struct结构体)。
没有线程之前,一个进程对应内核里的一个进程描述符,对应一个进程ID。但是引入线程概念之后,情况发生了变化,一个用户进程下管辖N个用户态线程,每个线程作为一个独立的调度实体在内核态都有自己的进程描述符,进程和内核的描述符一下子就变成了1:N关系,POSIX标准又要求进程内的所有线程调用
getpid函数时返回相同的进程ID,如何解决上述问题呢?
Linux内核引入了线程组的概念。
在这里插入图片描述
多线程的进程,又被称为线程组,线程组内的每一个线程在内核之中都存在一个进程描述符(task_struct)与之对应。进程描述符结构体中的pid,表面上看对应的是进程ID,其实不然,它对应的是线程ID;进程描述
符中的tgid,含义是Thread Group ID,该值对应的是用户层面的进程ID
在这里插入图片描述

线程异常
我们之前学到线程一旦异常那么整个进程都会退出,那么真的是如此吗?
演示:
代码

#include <iostream>
#include <pthread.h>
#include <unistd.h>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;while (true){std::cout << name << " pid:" << getpid() << "\n"<< std::endl;int a = 100;a /= 0;//除0错误sleep(1);}return nullptr;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");while (true){std::cout << "main thread pid:" << getpid() << std::endl;sleep(3);}return 0;
}

运行代码:
在这里插入图片描述
我们发现线程一旦异常确实会影响到整个进程。

结论:
1.线程谁先运行与调度器相关
2.随便哪个线程一旦异常,都可能导致整个进程整体退出
3.线程在创建并执行的时候,线程也需要进行等待的,如果主线程不等待,也会引起类似于僵尸进程问题,导致内存泄漏。

线程等待
已经退出的线程,其空间没有被释放,仍然在进程的地址空间内。
创建新的线程不会复用刚才退出线程的地址空间。
在这里插入图片描述
调用该函数的线程将挂起等待,直到id为thread的线程终止。thread线程以不同的方法终止,通过pthread_join得到的终止状态是不同的,总结如下:

  1. 如果thread线程通过return返回,value_ ptr所指向的单元里存放的是thread线程函数的返回值。
  2. 如果thread线程被别的线程调用pthread_ cancel异常终掉,value_ ptr所指向的单元里存放的是常数PTHREAD_CANCELED。
  3. 如果thread线程是自己调用pthread_exit终止的,value_ptr所指向的单元存放的是传给pthread_exit的参数。
  4. 如果对thread线程的终止状态不感兴趣,可以传NULL给value_ ptr参数。

在这里插入图片描述

在这里插入图片描述
参数解释:
thread:线程id
retval:输出型参数,下面再解释用处
pthread_join默认阻塞等待。
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;int i = 0;while (true){std::cout << name << "runing....." << std::endl;sleep(1);if(i++ == 10){break;}}std::cout << "new thread quit....." << std::endl;return nullptr;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");pthread_join(tid,nullptr);std::cout << "main thread wait done .... main quit!" << std::endl;return 0;
}

运行代码:
在这里插入图片描述
我们知道pthread_create里面有一个回调函数,而回调函数里面有一个返回值我们之前一直返回nullptr
在这里插入图片描述
这个返回值,一般是给主线程的,那么主线程该如何获取到?用pthread_join。
在这里插入图片描述
pthread_join的第二个参数,是输出型参数,用来获取放回值的。
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;int i = 0;while (true){std::cout << name << "runing....." << std::endl;sleep(1);if (i++ == 10){break;}}std::cout << "new thread quit....." << std::endl;return (void *)10;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");void *ret = nullptr;pthread_join(tid, &ret);std::cout << "ret: " << (long long)ret << std::endl;std::cout << "main thread wait done .... main quit!" << std::endl;return 0;
}

我们运行的时候会这样
我们只要在g++后面加-fpermissive即可

g++ -o mythread mythread.cc -std=c++11 -lpthread -fpermissive

在这里插入图片描述
再运行代码:
在这里插入图片描述
可以看到,我们成功获取到了返回值。
我们不仅仅只能返回变量,我们还能返回其它内容。
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;int i = 0;int *data = new int[10];while (true){std::cout << name << "runing....." << std::endl;sleep(1);data[i] = i;if (i++ == 10){break;}}std::cout << "new thread quit....." << std::endl;return (void *)data;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");void *ret = nullptr;pthread_join(tid, &ret);int *data = (int *)ret;for (int i = 0; i < 10; i++){std::cout << data[i] << " ";}std::cout << std::endl;std::cout << "main thread wait done .... main quit!" << std::endl;return 0;
}

运行结果:
在这里插入图片描述
线程终止
如果需要只终止某个线程而不终止整个进程,可以有三种方法:

  1. 从线程函数return。这种方法对主线程不适用,从main函数return相当于调用exit。
  2. 线程可以调用pthread_ exit终止自己。
  3. 一个线程可以调用pthread_ cancel终止同一进程中的另一个线程。
    能不能用exit终止线程呢?

代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;int i = 0;int *data = new int[10];while (true){std::cout << name << "runing....." << std::endl;sleep(1);data[i] = i;if (i++ == 10){break;}}std::cout << "new thread quit....." << std::endl;exit(10);return (void *)data;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");void *ret = nullptr;pthread_join(tid, &ret);int *data = (int *)ret;for (int i = 0; i < 10; i++){std::cout << data[i] << " ";}std::cout << std::endl;std::cout << "main thread wait done .... main quit!" << std::endl;return 0;
}

运行结果:
在这里插入图片描述
我们发现整个进程都被终止了,因为exit是终止进程的,绝对不要用exit终止线程。
那么我们如何终止新线程而不影响main线程呢?
pthread_exit()OS提供的终止线程的函数
在这里插入图片描述
在这里插入图片描述
参数retval就是之前的返回值。
代码

#include <iostream>
#include <pthread.h>
#include <unistd.h>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;int i = 0;int *data = new int[10];while (true){std::cout << name << "runing....." << std::endl;sleep(1);data[i] = i;if (i++ == 10){break;}}std::cout << "new thread quit....." << std::endl;pthread_exit((void*)data);
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");void *ret = nullptr;pthread_join(tid, &ret);int *data = (int *)ret;for (int i = 0; i < 10; i++){std::cout << data[i] << " ";}std::cout << std::endl;std::cout << "main thread wait done .... main quit!" << std::endl;return 0;
}

运行结果:
在这里插入图片描述
我们看到线程终止成功。

线程取消
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;while (true){std::cout << name << "runing....." << std::endl;sleep(1);}std::cout << "new thread quit....." << std::endl;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");int count = 3;while (true){std::cout << "main thread pid:" << getpid() << std::endl;if(count++ > 5) break;sleep(2);}pthread_cancel(tid);std::cout << "pthread cancle tid: " << tid << std::endl; void *ret = nullptr;pthread_join(tid, &ret);std::cout << "ret: " << (long long)ret << std::endl;std::cout << "main thread wait done .... main quit!" << std::endl;sleep(5);return 0;
}

运行结果:
在这里插入图片描述
我们看到最后main线程确实等待了5秒
在这里插入图片描述
然后退出了。
我们看到其中tid为啥这么大呢?之后再讲解。
而我们看到线程被取消,我们join的时候,退出码是-1.
而-1其实是:
在这里插入图片描述

线程ID的探索
我们之前看到线程ID是一个很大的值
格式化输出线程ID:
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <cstdio>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;while (true){std::cout << name << "runing....." << std::endl;sleep(1);}std::cout << "new thread quit....." << std::endl;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");printf("%u,%p\n",tid,tid);int count = 3;while (true){std::cout << "main thread pid:" << getpid() << std::endl;if(count++ > 5) break;sleep(2);}pthread_cancel(tid);std::cout << "pthread cancle tid: " << tid << std::endl; void *ret = nullptr;pthread_join(tid, &ret);std::cout << "ret: " << (long long)ret << std::endl;std::cout << "main thread wait done .... main quit!" << std::endl;sleep(5);return 0;
}

运行结果:
在这里插入图片描述
我们看到线程ID值很大,tid的本质是一个地址
为什么tid不用Linux中的LWP呢?
因为目前用的不是Linux自带的创建线程的接口,我们用的是pthread库中的接口。
我们知道线程共享进程的地址空间
在这里插入图片描述
但是线程有自己独立的栈结构,那么如何保证栈区是每一个线程独占的呢?---->原本的栈给main线程使用,而其余线程把共享区当做栈区。所以每个线程的tid就是自己栈区的起始地址
在这里插入图片描述
见一见
在这里插入图片描述
pthread库时通过clone做到上面的那点。
在这里插入图片描述
那么我们如何获取线程的id呢?
在这里插入图片描述
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <cstdio>void *threadRoutine(void *arg)
{const std::string name = (char *)arg;while (true){std::cout << name << "runing..... id: " << pthread_self() << std::endl;sleep(1);}std::cout << "new thread quit....." << std::endl;
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");int count = 3;while (true){std::cout << "main thread id:" << pthread_self() << std::endl;if(count++ > 5) break;sleep(2);}void *ret = nullptr;pthread_join(tid, &ret);std::cout << "ret: " << (long long)ret << std::endl;std::cout << "main thread wait done .... main quit!" << std::endl;sleep(5);return 0;
}

运行代码:
在这里插入图片描述
我们看到我们获取到了不同的线程id

大部分线程的代码是共享的!
一个小实验:
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <cstdio>int g_val = 0;
void *threadRoutine(void *arg)
{const std::string name = (char *)arg;while(true){std::cout << name << " g_val: " << g_val << " &g_val" << &g_val << std::endl;g_val++;sleep(1);}}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");while(true){std::cout << "main thread g_val: " << g_val << " &g_val" << &g_val << std::endl;sleep(1);}return 0;
}

运行结果:
在这里插入图片描述
我们看到g_val被大家所共享,大家都可以看到g_val,一个线程对其进程改变,其它线程都看的到。
那么如果线程想要自己是私有的变量呢?该如何?
只要在变量前加__thread即可。
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <cstdio>__thread int g_val = 0;
void *threadRoutine(void *arg)
{while(true){std::cout << (char*)arg << ": "<< g_val << " &: " << &g_val << std::endl;g_val++;sleep(1);}
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");while(true){std::cout << "main thread: " << g_val << " &: " << &g_val << std::endl;sleep(1);}return 0;
}

运行代码:
在这里插入图片描述
这里运行的时候是并行执行的所以会看不清,但是我们也能看到,两个变量的地址不一样的。

__thread:修饰全局变量,带来的结果就是让每一个线程各自拥有一个全局变量---->线程的就不存储。

我们之前学过进程替换,如果线程进行进程替换会如何?
代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <cstdio>__thread int g_val = 0;
void *threadRoutine(void *arg)
{execl("/bin/ls","ls",nullptr);while(true){std::cout << (char*)arg << ": "<< g_val << " &: " << &g_val << std::endl;g_val++;sleep(1);}}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");while(true){std::cout << "main thread: " << g_val << " &: " << &g_val << std::endl;sleep(1);}return 0;
}

运行结果:
在这里插入图片描述
我们看到ls确实被执行了,但是整个进程的代码都被替换掉了。

分离线程
默认情况下,新创建的线程是joinable的,线程退出后,需要对其进行pthread_join操作,否则无法释放资源,从而造成系统泄漏
如果不关心线程的返回值,join是一种负担,这个时候,我们可以告诉系统,当线程退出时,自动释放线程资源。

测试代码:

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <cstdio>
#include <cerrno>
#include <cstring>__thread int g_val = 0;
void *threadRoutine(void *arg)
{pthread_detach(pthread_self());while(true){std::cout << (char*)arg << ": "<< g_val << " &: " << &g_val << std::endl;g_val++;sleep(1);}
}
int main()
{pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void *)"thread 1");while(true){std::cout << "main thread: " << g_val << " &: " << &g_val << std::endl;sleep(1);break;}int n = pthread_join(tid,nullptr);std::cout << "n:" << n << " errstring: " << strerror(n) << std::endl;return 0;
}

运行结果:
在这里插入图片描述
我们看到join异常进程直接退出。

所以线程分离后线程异常也会影响整个进程

C++语言提供的线程,而语言级别的线程库必须调用原生线程库---->本质是对原生线程库的封装
代码:
在这里插入图片描述
运行:
在这里插入图片描述
进程线程间的互斥相关背景概念
临界资源:多线程执行流共享的资源就叫做临界资源
临界区:每个线程内部,访问临界自娱的代码,就叫做临界区
互斥:任何时刻,互斥保证有且只有一个执行流进入临界区,访问临界资源,通常对临界资源起保护作用
原子性(后面讨论如何实现):不会被任何调度机制打断的操作,该操作只有两态,要么完成,要么未完成

如果多个线程访问同一个全局变量,并对它进行数据计算,多线程会互相影响吗?
测试代码:
抢票代码

#include <iostream>
#include <thread>
#include <pthread.h>
#include <unistd.h>
#include <cstdio>
#include <cerrno>
#include <cstring>int tickets = 10000;
void *GetTickets(void *args)
{while (true){if (tickets > 0){usleep(1000);printf("%p : %d\n", pthread_self(), tickets);tickets--;}else{break;}}return nullptr;
}int main()
{pthread_t t1;pthread_t t2;pthread_t t3;pthread_create(&t1, nullptr, GetTickets, nullptr);pthread_create(&t2, nullptr, GetTickets, nullptr);pthread_create(&t3, nullptr, GetTickets, nullptr);pthread_join(t1, nullptr);pthread_join(t2, nullptr);pthread_join(t3, nullptr);return 0;
}

运行结果:
在这里插入图片描述
我们发现票抢到-1了,这肯定是错的!
每次运行的结果都不一定一样:
在这里插入图片描述
所以tickets在并发访问的时候,导致了我们数据不一致的问题。之后再解决这个歌问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/469140.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何用 ChatGPT 做项目管理?

ChatGPT 可以通过创建和维护跨团队项目协作计划&#xff0c;让员工更容易理解他们的角色和职责。 这个协作计划里面会包括每个团队或个人要执行的具体任务&#xff0c;每个任务最后期限和任何事情之 间的依赖关系。 该场景对应的关键词库:(24 个) 项目管理、项目协作计划、跨…

CSRNET图像修复,DNN

CSRNET图像修复 CSRNET图像修复&#xff0c;只需要OPENCV的DNN

cool Node后端 中实现中间件的书写

1.需求 在node后端中&#xff0c;想实现一个专门鉴权的文件配置&#xff0c;可以这样来解释 就是 有些接口需要token调用接口&#xff0c;有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理&#xf…

2024幻兽帕鲁服务器创建教程_阿里PK腾讯超简单

幻兽帕鲁官方服务器不稳定&#xff1f;自己搭建幻兽帕鲁服务器&#xff0c;低延迟、稳定不卡&#xff0c;目前阿里云和腾讯云均推出幻兽帕鲁专用服务器&#xff0c;腾讯云直接提供幻兽帕鲁镜像系统&#xff0c;阿里云通过计算巢服务&#xff0c;均可以一键部署&#xff0c;鼠标…

FPGA转行ISP的探索之一:行业概览

ISP的行业位置 最近看到一个分析&#xff0c;说FPGA的从业者将来转向ISP&#xff08;Image Signal Process图像信号处理&#xff09;是个不错的选择&#xff0c;可以适应智能汽车、AI等领域。故而我查了一下ISP&#xff0c;对它大致有个概念。 传统的ISP对应的是相机公司&…

Ps:曝光度

曝光度 Exposure命令在处理图像时&#xff0c;尤其是针对 32 位 HDR 图像&#xff0c;通常在线性颜色空间&#xff08;即灰度系数为 1.0&#xff09;中执行计算&#xff0c;这意味着它对图像的亮度进行直接和线性的调整。 这种处理方式特别适合处理高动态范围内容&#xff0c;因…

JavaScript中的常见算法

一.排序算法 1.冒泡排序 冒泡排序比较所有相邻的两个项&#xff0c;如果第一个比第二个大&#xff0c;则交换它们。元素项向上移动至 正确的顺序&#xff0c;就好像气泡升至表面一样。 function bubbleSort(arr) {const { length } arrfor (let i 0; i < length - 1; i)…

算法学习——LeetCode力扣回溯篇2

算法学习——LeetCode力扣回溯篇2 40. 组合总和 II 40. 组合总和 II - 力扣&#xff08;LeetCode&#xff09; 描述 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字…

【树莓派系统的位数】

要区分 ARM 架构下载的版本是 32 位还是 64 位&#xff0c;可以执行以下步骤&#xff1a; 执行以下命令来检查 Raspberry Pi 的 CPU 类型&#xff1a; uname -m如果返回的结果是 aarch64&#xff0c;则表示您的 Raspberry Pi 是 64 位的 ARM 架构。如果返回的结果是 armv7l&a…

【小记】MacOS Install golang

问题 - command not found: go ➜ brew install golang ➜ go version go version go1.21.7 darwin/arm64写在最后&#xff1a;若本文章对您有帮助&#xff0c;请点个赞啦 ٩(๑•̀ω•́๑)۶

【原理分析】用JAVA还原刘谦在2024央视春晚的扑克牌魔术

【原理分析】用JAVA分析刘谦在2024央视春晚的扑克牌魔术 前言原理分析代码实现程序结构变量和方法程序思路代码实现运行截图 总结 前言 央视春晚与魔术师刘谦从2009年开始&#xff0c;近十年间深度捆绑&#xff0c;刘谦开辟了春晚近景魔术的先河&#xff0c;一句“见证奇迹的时…

【QT+QGIS跨平台编译】之四十:【gsl+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、GSL介绍二、GSL下载三、文件分析四、pro文件五、编译实践一、GSL介绍 GSL(GNU Scientific Library)是一个开源的数值计算库,用于提供一系列常用的数学函数和算法。它为科学计算和数据分析提供了高效、可靠的工具。 GSL库提供了丰富的功能,包括数值积分、数值…