【数据结构】18 二叉搜索树(查找,插入,删除)

定义

二叉搜索树也叫二叉排序树或者二叉查找树。它是一种对排序和查找都很有用的特殊二叉树。
一个二叉搜索树可以为空,如果它不为空,它将满足以下性质:

  1. 非空左子树的所有键值小于其根节点的键值
  2. 非空右子树的所有键值都大于其根结点的键值
  3. 左、右子树都是二叉树

动态查找

查找操作Find

在二叉搜索树中查找关键字为X的结点,返回其所在结点的地址。查找过程如下:

  1. 查找从树的根节点开始,若树为空,返回NULL
  2. 搜索树非空,则根节点关键字和X比较,依据结果,需要进行不同的处理
    若根节点键值小于X,在根节点右子树中查找
    若根节点的键值大于X,在根节点的左子树中查找
    若两者比较结果相等,搜索完成。

递归代码

Position Find_RE(BinTree BT, ElementType X) {if (!BT) {return NULL;}if (X > BT->Data) {return Find_RE(BT->Right, X);}else if(X < BT->Data){return Find_RE(BT->Left, X);}else{return BT;}
}

迭代函数

Position Find_D(BinTree BT, ElementType X) {BinTree T = BT;while (T) {if (T->Data > X) {T = T->Left;}else if (T->Data < X) {T = T->Right;}else{return T;}}
}

查找最大和最小元素

根据二叉搜索树的性质,最大元素一定在最右分支的尾端,最小元素一定在最左分支的尾端。
递归函数

Position FindMin(BinTree BT) {if (!BT) {return NULL;}else if(!BT->Left){return BT;}else{return FindMin(BT->Left);}
}

迭代函数

Position FindMinD(BinTree BT) {BinTree T = BT;while (T->Left) {T = T->Left;}return T;
}

找最大值只需要把left换成right

插入

BinTree Insert(BinTree BT, ElementType X) {if (!BT) {BT = (BinTree)malloc(sizeof(struct TNode));BT->Data = X;BT->Left = BT->Right = NULL;}else {if (X > BT->Data) {BT->Right =  Insert(BT->Right, X);}else if (X < BT->Data) {BT->Left =  Insert(BT->Left, X);}}return BT;
}

删除

二叉搜索树的删除比较复杂,需要考虑节点的位置

  1. 叶结点
    可以直接删除,将其父节点指针置空即可。
  2. 只有一个孩子结点
    要修改其父节点的指针,指向要删除结点的孩子结点。
  3. 有左、右两颗树
    究竟用哪颗子树的根结点来填充删除节点的位置?有两种选择方式:选择左子树的最大元素,或者选择右子树的最小元素。无论哪种方式,最后被选择的结点必定最多只有一个孩子。
    在这里插入图片描述

采用右子树的最小元素的删除代替策略。
代码思路: 先找到要删除元素的位置,若其具有左右子树,找到该位置的右子树里面的最小元素,赋值到该位置上,在其右子树中删除最小元素(递归调用),若只有一个子树或者没有,易操作。


BinTree DeleteBT(BinTree BT, ElementType X) {Position p;if (!BT) {printf("can't find the node\n");}else {if (X > BT->Data) {BT->Right = DeleteBT(BT->Right, X);}else if (X < BT->Data) {BT->Left = DeleteBT(BT->Left, X);}else {if (BT->Left && BT->Right) {//FIND THE Min OF Right TREEp = FindMin(BT->Right);BT->Data = p->Data;BT->Right = DeleteBT(BT->Right, p->Data);}else {p = BT;if (!BT->Left) {BT = BT->Right;}else { BT = BT->Left; }free(p);}}}return BT;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/473510.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Redis实战】有MQ为啥不用?用Redis作消息队列!?Redis作消息队列使用方法及底层原理高级进阶

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《Redis实战与进阶》 本专栏纯属为爱发电永久免费&#xff01;&a…

初始Git及Linux Centos下安装Git

文章目录 前言版本控制器注意Git安装 前言 不知道你⼯作或学习时&#xff0c;有没有遇到这样的情况&#xff1a;我们在编写各种⽂档时&#xff0c;为了防⽌⽂档丢失&#xff0c;更改失误&#xff0c;失误后能恢复到原来的版本&#xff0c;不得不复制出⼀个副本&#xff0c;⽐如…

算法练习-赎金信(思路+流程图+代码)

难度参考 难度&#xff1a;中等 分类&#xff1a;哈希表 难度与分类由我所参与的培训课程提供&#xff0c;但需要注意的是&#xff0c;难度与分类仅供参考。且所在课程未提供测试平台&#xff0c;故实现代码主要为自行测试的那种&#xff0c;以下内容均为个人笔记&#xff0c;旨…

【mysql】数据约束

一、数据约束&#xff1a; 什么是约束&#xff1f; 为了确保表中的数据的完整性(准确性、正确性)&#xff0c;为表添加一些限制。是数据库中表设计的一个最基本规则。使用约束可以使数据更加准确&#xff0c;从而减少冗余数据&#xff08;脏数据&#xff09;。 数据库完整性约…

HarmonyOS—@State装饰器:组件内状态

State装饰的变量&#xff0c;或称为状态变量&#xff0c;一旦变量拥有了状态属性&#xff0c;就和自定义组件的渲染绑定起来。当状态改变时&#xff0c;UI会发生对应的渲染改变。 在状态变量相关装饰器中&#xff0c;State是最基础的&#xff0c;使变量拥有状态属性的装饰器&a…

CSS 不同颜色的小圆角方块组成的旋转加载动画

<template><!-- 创建一个装载自定义旋转加载动画的容器 --><view class="spinner"><!-- 定义外部包裹容器,用于实现整体旋转动画 --><view class="outer"><!-- 定义四个内部小方块以形成十字形结构 --><view clas…

如何让Obsidian实现电脑端和安卓端同步

Obsidian是一款知名的笔记软件&#xff0c;支持Markdown语法&#xff0c;它允许用户在多个设备之间同步文件。要在安卓设备上实现同步&#xff0c;可以使用remote save插件&#xff0c;以下是具体操作步骤&#xff1a; 首先是安装电脑端的obsidian&#xff0c;然后依次下载obs…

MOSFET栅极应用电路分析汇总(驱动、加速、保护、自举等等)

概述 MOSFET是一种常见的电压型控制器件&#xff0c;具有开关速度快、高频性能、输入阻抗高、噪声小、驱动功率小、动态范围大、安全工作区域(SOA)宽等一系列的优点&#xff0c;因此被广泛的应用于开关电源、电机控制、电动工具等各行各业。栅极做为MOSFET本身较薄弱的环节&am…

Python如何实现定时发送qq消息

因为生活中老是忘记各种事情&#xff0c;刚好又在学python&#xff0c;便突发奇想通过python实现提醒任务的功能&#xff08;尽管TIM有定时功能&#xff09;&#xff0c;也可定时给好友、群、讨论组发送qq消息。其工作流程是&#xff1a;访问数据库提取最近计划——>根据数据…

Java - SPI机制

本文参考&#xff1a;SPI机制 SPI&#xff08;Service Provider Interface&#xff09;&#xff0c;是JDK内置的一种服务提供发现机制&#xff0c;可以用来启动框架扩展和替换组件&#xff0c;主要是被框架的开发人员使用&#xff0c;比如 java.sql.Driver接口&#xff0c;其他…

基于SSM的社区疫情防控管理系统(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于SSM的社区疫情防控管理系统&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spri…

torch.utils.data

整体架构 平时使用 pytorch 加载数据时大概是这样的&#xff1a; import numpy as np from torch.utils.data import Dataset, DataLoaderclass ExampleDataset(Dataset):def __init__(self):self.data [1, 2, 3, 4, 5]def __getitem__(self, idx):return self.data[idx]def…