C#学习(十三)——多线程与异步

一、什么是线程

程序执行的最小单元
一次页面的渲染、一次点击事件的触发、一次数据库的访问、一次登录操作都可以看作是一个一个的进程

在一个进程中同时启用多个线程并行操作,就叫做多线程
由CPU来自动处理
线程有运行、阻塞、就绪三态

代码示例:

class Program
{static void Main(string[] args){Thread thread = new Thread(() =>{Print1();});thread.Start();for(int i = 0; i < 1000; i++){Console.Write(0);}Console.Read();}static void Print1(){for (int i = 0;i < 1000; i++){Console.Write(1);}}}

运行结果为
示例代码运行结果
可以看到,在结果中,0和1的输出是交织在一起的,原因为两个线程交替着被运行,不断反复直到结束。
另外一个常用操作为Sleep();让时间暂停,使得线程进入静默状态。

二、前台线程、后台线程与线程池托管

代码举例:

class Program
{static void Main(string[] args){Thread thread = new Thread(PrintHello);thread.Start();Console.WriteLine("退出主程序");}private static void PrintHello(object? obj){while (true){Thread.Sleep(1000);Console.WriteLine("Hello from PrintHello!");}}
}

运行会发现,即使主线程运行结束了,子线程依旧在持续运行;持续运行的子线程就称为前台线程
一般来说,只有等待前台线程运行完毕后,程序才可以进行关闭。
与之对应的是 后台线程,可以通过thread.IsBackground = true;//切换为后台线程将前台 线程切换到后台线程,这样再次运行会发现,当主线程结束后,后台线程就会被强制结束。

一般来说,前台线程用于需要时间比较长的等待业务,比如监听客户端请求,而后台线程适用于时较短的业务比如执行客户端发来的请求,后台进程不会影响程序的终止。
托管在线程池中的线程全部为后台线程
所有使用new Thread创建的线程默认均为前台线程

三、线程池

示例代码

for(int i = 0;i < 100; i++)
{ThreadPool.QueueUserWorkItem((o) =>{Console.WriteLine($"循环次数{i} 线程id {Thread.CurrentThread.ManagedThreadId}");});
}

线程池执行结果
可以看到执行结果出现了id重复的状况,原因就是线程池会重复使用已经完成的线程,极大节约硬件资源。
另外,可以看到,for循环有100次,但是从输出结果来看,只执行了十几次,原因为线程池创建的线程均为后台线程,只要主程序退出,线程池的后台线程就会被停止,而主程序main执行的时间很短,因此线程池内线程没有来得及执行就被停止了。

对于重要的并发量小的线程,需要手动创建管理,对于并发量大而又不太重要的线程,最好托管到线程池中。

四、结束线程与CancellationToken

不管程序有多少个进程,进程内部的资源都是被共享的。所以C#对进程的取消代码作了更高层次的抽象,把进程的取消过程封装成为了Token的形式,也就是CancellationToken(取消令牌)。不仅可以使用在多线程中,还可以用于异步操作。

class Program
{static void Main(string[] args){CancellationTokenSource cts = new CancellationTokenSource();Thread thread = new Thread(() => { PrintHello(cts.Token); });thread.Start();//下载文件Thread.Sleep(5000);//关闭子进程//cts.Cancel();cts.CancelAfter(3000);//在下载完成后3s失效Console.WriteLine("退出主程序");}private static void PrintHello(CancellationToken tokenSource){while (!tokenSource.IsCancellationRequested){Thread.Sleep(1000);Console.WriteLine("Hello from PrintHello!");}}
}

五、Join与IsAlive

对于子线程执行时间不确定的情况,需要使用Join的方法,加入至主程序执行中,或者使用IsAlive方法进行判断

class Program
{static void Main(string[] args){Thread thread = new Thread(() => { PrintHello(); });thread.Start();//方法一//thread.Join();//方法二while(thread.IsAlive){Console.WriteLine("子线程仍在工作");Thread.Sleep(100);}Console.WriteLine("退出主程序");}private static void PrintHello(){int i = 0;while (i++ < 10){Thread.Sleep(new Random().Next(100, 1000));Console.WriteLine("Hello from PrintHello!");}}
}

六、资源竞争与线程锁lock

使用线程可以并发的在CPU的核心中执行任务,最大化CPU的利用率,但是并发执行任务也可能产生各种各样的资源竞争问题。

举例:

    private static void AddText(){File.AppendAllText(@"D:\test.txt", $"开始{Thread.CurrentThread.ManagedThreadId}");Thread.Sleep(100);File.AppendAllText((@"D:\test.txt", $"结束{Thread.CurrentThread.ManagedThreadId}");}

当两个线程同时需要使用同一个文件资源时,产生资源竞争,导致系统崩溃。
因此必须保证同一时刻只能有一个线程访问资源,避免出现资源恶性竞争。
使用线程锁就可以解决

class Program
{static object lockedObj = new object();static void Main(string[] args){for(int i = 0; i < 10; i++){var t = new Thread(AddText); t.Start();}Console.WriteLine("退出主程序");}private static void AddText(){lock(lockedObj){File.AppendAllText(@"D:\test.txt", $"开始{Thread.CurrentThread.ManagedThreadId}");Thread.Sleep(100);File.AppendAllText(@"D:\test.txt", $"结束{Thread.CurrentThread.ManagedThreadId}");}           }
}

七、异步

在之前项目中,我们实现的所有操作都是同步进行的,然而当有同时10000个请求发生时,会使得用户有很长的等待,服务器会等待数据库的响应,完成后反馈至用户。
而异步操作要实现,不要等待数据库,继续执行下一个请求,当数据返回数据以后,再回头继续处理上一个请求。
然而对于更高级别的数量请求,仅仅依靠异步也是不够的,因此需要:
异步服务+每个机器多开进程+多个机器组合实现;
K8s, Kubernetess容器化分布式部署;
.NET Core对容器化非常非常友好、支持度极高

八、异步编程Task

我们使用异步处理并行,使用多线程处理并发。

异步逻辑是要基于方法没有依赖关系的,例如

 class Program{static void Main(string[] args){Calculate();Console.Read();}static void Calculate(){//Task->异步,Thread->线程Task.Run(() =>{Calculate1();});Task.Run(() =>{Calculate2();});Task.Run(() =>{Calculate3();});}static int Calculate1(){var result = 3;Console.WriteLine($"Calculate1: {result}");Task.Delay(2000);return result;}static int Calculate2(){var result = 4;Console.WriteLine($"Calculate2: {result}");Task.Delay(3000);return result;}static int Calculate3(){var result = 5;Console.WriteLine($"Calculate3: {result}");Task.Delay(1000);return result;}}

但如果是具有依赖关系的,例如,Caculate2()需要Caculate1()的结果,Caculate3需要Caculate1()和Caculate2()的结果,那么就需要做如下调整

class Program
{static void Main(string[] args){Calculate();Console.Read();}static void Calculate(){//Task->异步,Thread->线程var task1 = Task.Run(() =>{return Calculate1();});var awaiter1 = task1.GetAwaiter();//获得异步等待对象awaiter1.OnCompleted(() =>{var result1 = awaiter1.GetResult();//获得异步逻辑的最终计算结果var task2 = Task.Run(() =>{return Calculate2(result1);});var awaiter2 = task2.GetAwaiter();awaiter2.OnCompleted(() =>{var result2 = awaiter2.GetResult();var result = Calculate3(result1, result2);Console.WriteLine(result);});});          }static int Calculate1(){var result = 3;Console.WriteLine($"Calculate1: {result}");Task.Delay(2000);return result;}static int Calculate2(int a){var result = a * 2;Console.WriteLine($"Calculate2: {result}");Task.Delay(3000);return result;}static int Calculate3(int a, int b){var result = a + b;Console.WriteLine($"Calculate3: {result}");Task.Delay(1000);return result;}
}

九、C#的异步 async/await

可以看到,上面的异步操作代码非常复杂繁琐,接下来使用async/await化解上面操作

同步方法
指程序调用某个方法,需要等待执行完成以后才进行下一步操作
异步方法
指程序调用某个方法的时候,不做任何等待,在处理完成之前就返回该方法,继续执行接下来的操作,即函数在执行完成前就可以先返回调用方,然后继续执行接下来的逻辑完成任务的函数

举例:

public async Task<int> DoSomethingAsync()
{//创建一个计算1万毫秒的任务Task<int> longRunningTask = LongRunningTaskAsync();//使用await执行这个任务int result = await longRunningTask;return result;
}
//假装计算1w毫秒,输出为1
private async Task<int> LongRunningTaskAsync()
{await Task.Delay(10000);//延迟10sreturn 1;
}

1.需要使用async关键词
2.返回类型为:voidTaskTask<T>IAsyncEnumerable<T>
3.命名规范:Async结尾
4.需要有await表达式
5.要有返回值
6.async函数只能被async函数调用

共有三个部分:
第一部分异步调用:Task<int> longRunningTask = LongRunningTaskAsync();
第二部分执行异步:int result = await longRunningTask;
第三部分异步方法:private async Task<int> LongRunningTaskAsync(){}

注:

  • [ 在函数声明中,async关键字要放到返回类型之前 ]
  • [ async函数本身不创建异步操作,只有在调用await的时候才会进行异步操作 ]

下面对之前的异步代码进行优化:

class Program
{static void Main(string[] args){Calculate();Console.Read();}static async void Calculate(){var result1 = await Calculate1Async();var result2 = await Calculate2Async(result1);var result = await Calculate3Async(result1, result2);Console.WriteLine(result);          }static async Task<int> Calculate1Async(){var result = 3;Console.WriteLine($"Calculate1: {result}");await Task.Delay(2000);return result;}static async Task<int> Calculate2Async(int a){var result = a * 2;Console.WriteLine($"Calculate2: {result}");await Task.Delay(3000);return result;}static async Task<int> Calculate3Async(int a, int b){var result = a + b;Console.WriteLine($"Calculate3: {result}");await Task.Delay(1000);return result;}
}

十、Task VS. Thread

异步不是多线程!!!
异步用来处理并行,多线程用于处理并发

class Program
{static void Main(string[] args){TaskTest();ThreadTest();Console.Read();}static void TaskTest(){var sw = new Stopwatch();sw.Start();for(int i = 0; i < 100; i++){Task.Factory.StartNew(() => { });}sw.Stop();Console.WriteLine($"Task {sw.ElapsedMilliseconds}");}static void ThreadTest(){var sw = new Stopwatch();sw.Start();for (int i = 0; i < 100; i++){new Thread(() => { }).Start();}sw.Stop();Console.WriteLine($"Thread {sw.ElapsedMilliseconds}");}
}

执行结果为
Task VS. Thread执行结果
可以看到Task的执行速度要远高于Thread!
异步并不会创建线程,只是通过主线程来执行,同时开出一条分路来执行其他任务,非同步分别执行。但是在最后会创建一个非常轻量级的Worker Thread,用于通知主程序异步结束,也称为回调Call Back.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/475046.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【漏洞复现】蓝网科技临床浏览系统信息泄露漏洞

Nx01 产品简介 蓝网科技临床浏览系统是一个专门用于医疗行业的软件系统&#xff0c;主要用于医生、护士和其他医疗专业人员在临床工作中进行信息浏览、查询和管理。 Nx02 漏洞描述 蓝网科技临床浏览系统存在信息泄露漏洞&#xff0c;攻击者可以利用该漏洞获取敏感信息。 Nx03…

【二十八】springboot整合logback实现日志管理

本章节是记录logback在springboot项目中的简单使用&#xff0c;本文将会演示如何通过logback将日志记录到日志文件或输出到控制台等管理操作。将会从以下几个方面进行讲解。最后实现将特定级别的特定日志保存到日志文件。 一、依赖 <dependency><groupId>ch.qos.l…

OpenAI全新发布的Sora,到底意味着什么?

16日凌晨&#xff0c;OpenAI发布了文本视频的工具&#xff08;text-do-video&#xff09;Sora&#xff0c;整个世界再次被震撼。 Sora的出现&#xff0c;到底意味着什么&#xff1f; 目录 Sora的背景与概述Sora是什么&#xff1f;能为我们做些什么&#xff1f;存在的一些问题 文…

uni-app使用uView打开弹出层后输入框聚焦时placeholder错位问题

这里就不放效果了&#xff0c;大概意思就是在使用uView的popus时&#xff0c;在底部弹出后&#xff0c;如果弹窗中的输入框会造成一瞬间的placeholder文字错位&#xff0c;这个问题的主要是因为uView安全区适配导致 uView相关文档 https://www.uviewui.com/components/safeAr…

UE5中的DataTable说明

创建DataTable 在编辑器中创建 在文件夹空白处右击&#xff0c;选择Miscellaneous/DataTable&#xff0c;如图&#xff1a; 使用代码创建 // 创建DataTable实例 UDataTable* MyDataTable NewObject(); // 创建一个行结构体 UStruct* RowStruct UStruct::CreateEmpty(); // 添…

SPSSAU【文本分析】|社会关系网络图

社会网络关系图 社会网络关系图展示关键词之间的关系情况&#xff0c;此处的关系是指‘共词矩阵’&#xff0c;即两个关键词同时出现的频数情况&#xff0c;将‘共词矩阵’信息使用可视化方式进行呈现出来&#xff0c;接下来将分别阐述‘共词矩阵’和‘社会网络关系图’。 共词…

Java并发基础:ConcurrentSkipListMap全面解析

内容概要 ConcurrentSkipListMap类它融合了跳表的高效查找与并发控制的稳定性&#xff0c;在多线程环境下&#xff0c;该类提供了出色的线程安全性能&#xff0c;确保数据的一致性与完整性&#xff0c;其操作具有对数级别的时间复杂度&#xff0c;即使在大数据集下也能维持高效…

【简洁的代码永远不会掩盖设计者的意图】如何写出规范整洁的代码

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;Vir2021GKBS &#x1f43c;本文由…

Unity 减低GC和优化

文章目录 在Unity中&#xff0c;垃圾收集&#xff08;Garbage Collection, GC&#xff09;是一项重要的内存管理机制&#xff0c;但过度的GC活动可能会导致性能瓶颈。优化Unity项目中的GC涉及减少不必要的对象分配和生命周期管理。以下列举了五个实例来详细说明如何降低GC负担并…

Typora+PicGO+腾讯云COS做图床

文章目录 Typora&#xff0b;PicGO&#xff0b;腾讯云COS做图床一、为什么使用图床二、Typora、PicGO和腾讯云COS介绍三、下载Typora和PicGOTyporaPicGO 四、配置Typora、PicGO和腾讯云COS腾讯云COS配置PicGO配置Typora配置 Typora&#xff0b;PicGO&#xff0b;腾讯云COS做图床…

伦敦金和现货黄金是一回事吗?

想进入黄金市场的朋友&#xff0c;在网上一搜相关的讯息&#xff0c;可能就懵了。这个市场中好像有几个品种&#xff0c;又是伦敦金又是现货黄金什么的。很多新手投资者想知道&#xff0c;这些伦敦金、现货黄金分别是指什么&#xff0c;下面我们就来讨论一下。 实际上&#xff…

微信小程序独立分包与分包预下载

官网链接 独立分包配置方法 独立分包使用限制 独立分包中不能依赖主包和其他分包中的内容&#xff0c;包括 js 文件、模板、wxss、自定义组件等&#xff1b;App 只能在主包内定义&#xff0c;独立分包中不能定义 App&#xff0c;会造成无法预期的行为独立分包中暂时不支持使用…