数学建模:BP神经网络(含python实现)

原理

  BP 神经网络,也称为多层感知机(Multilayer Perceptron,MLP),是一种常见的神经网络模型,用于解决各种机器学习问题,包括分类和回归。BP 代表“反向传播”(Backpropagation),这是该模型训练的关键算法。
  BP 神经网络由多个神经元组成,通常分为输入层、隐藏层和输出层。每个神经元都与前一层的每个神经元相连,并且具有权重,用于调整信号的传递和计算。BP 神经网络的原理基于前向传播和反向传播两个关键步骤。
  前向传播是在前向传播过程中,输入信号从输入层传递到隐藏层和输出层,每个神经元将其输入与权重相乘并应用激活函数来产生输出。这个过程一直持续到达输出层,生成网络的预测结果。输入层到隐藏层公式: z j = ∑ i = 1 n w j i ( 1 ) x i z_j=\sum_{i=1}^{n}w_{ji}^{(1)}x_i zj=i=1nwji(1)xi α j = f ( z j ) \alpha_j=f(z_j) αj=f(zj)  输入层到隐藏层公式: z k = ∑ j = 1 m w k i ( 2 ) α j z_k=\sum_{j=1}^{m}w_{ki}^{(2)}\alpha_j zk=j=1mwki(2)αj α k = f ( z k ) \alpha_k=f(z_k) αk=f(zk)  其中, z j z_j zj z k z_k zk分别表示隐藏层和输出层神经元的加权输入, α j \alpha_j αj α k \alpha_k αk表示它们的激活输出,𝑤是权重,𝑥是自变量,𝑓是激活函数。
  反向传播是在反向传播过程中,网络的输出与实际目标进行比较,以计算误差。然后,误差通过网络反向传播,根据链式规则,将误差分配给每个神经元,并根据误差调整权重,以减小误差。这个过程重复进行多次,直到误差收敛到满意的水平或达到预定的训练轮次。其公式如下: Δ w k j ( 2 ) = − η ∂ E ∂ w k j ( 2 ) \Delta w_{kj}^{(2)}=-\eta \frac{\partial E}{\partial w_{kj}^{(2)}} Δwkj(2)=ηwkj(2)E Δ w j i ( 1 ) = − η ∂ E ∂ w j i ( 1 ) \Delta w_{ji}^{(1)}=-\eta \frac{\partial E}{\partial w_{ji}^{(1)}} Δwji(1)=ηwji(1)E  其中,其中,𝜂是学习率,∂𝐸,∂𝑤表示误差关于权重的偏导数。误差计算中通常使用均方误差(Mean Squared Error,MSE)作为误差函数: E = 1 2 ∑ k = 1 p ( t k − α k ) 2 E=\frac12\sum_{k=1}^p(t_k-\alpha_k)^2 E=21k=1p(tkαk)2  其中, t k t_k tk是目标输入, α k \alpha_k αk是网络的实际输出。
  BP神经网络结构:在这里插入图片描述

代码

多层感知机实际上就是多层全连接网络构成的网络,一个示例代码:

import tensorflow as tf
from tensorflow import keras# 定义模型
model = keras.Sequential([keras.layers.Dense(64, activation='relu', input_shape=(X.shape[1],)),keras.layers.Dense(32, activation='sigmoid'),keras.layers.Dense(1, activation='sigmoid')
])
# model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# model.fit(X_train, Y_train, epochs=100, batch_size=32, validation_split=0.05)
# odel = keras.Sequential([
#     keras.layers.Dense(128, activation='relu', input_shape=(X.shape[1],)),
#     keras.layers.Dense(64, activation='sigmoid'),
#     keras.layers.Dense(32, activation='relu'),
#     keras.layers.Dense(16, activation='sigmoid'),
#     keras.layers.Dense(8, activation='relu'),
#     keras.layers.Dense(1, activation='sigmoid')
# ])model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 模型训练
history=model.fit(X_train, Y_train, epochs=60, batch_size=32, validation_split=0.5)

在这里插入图片描述

# 模型评估
test_loss, test_accuracy = model.evaluate(X_test, Y_test)
print(f'Test accuracy: {test_accuracy}')
# 使用表1的所有行进行水肿概率的预测
# all_predictions = model.predict(X2)
# all_predictions

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/478611.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【天衍系列 01】深入理解Flink的 FileSource 组件:实现大规模数据文件处理

文章目录 01 基本概念02 工作原理03 数据流实现04 项目实战4.1 项目结构4.2 maven依赖4.3 StreamFormat读取文件数据4.4 BulkFormat读取文件数据4.5 使用小结 05 数据源比较06 总结 01 基本概念 Apache Flink 是一个流式处理框架,被广泛应用于大数据领域的实时数据…

从零开始学逆向:理解ret2libc-2

1.题目信息 题目下载链接:https://pan.baidu.com/s/1I9IOqD3Jq6RrghlUNL0wsg 提取码:0000 2.解题分析 ret2libc即劫持程序的控制流,使其执行libc中的函数,一般是返回到某个函数的plt处,或者某个函数的具体位置&…

HTML+CSS:发光滑块

效果演示 一个具有光晕效果的自定义滑动条&#xff0c;可以根据滑动条的位置和数值的变化来改变滑块的样式和颜色。 Code <input type"range" class"glow" style"--val: 50" value"50" min"0" max"100"oninpu…

element-plus日期选择器2次封装

预期效果 官网默认样式&#xff1a; 修改后的样式&#xff1a; 代码实现 DatePicker.vue <template><div class"date-picker-container"><el-date-picker v-model"date" change"handleChange" type"date" value-for…

STM32 TIM输入捕获测频率占空比库函数

目录 一、输入捕获初始化函数 TIM_ICInit TIM_PWMIConfig TIM_ICStructInit 二、主从触发模式对应函数 TIM_SelectInputTrigger TIM_SelectOutputTrigger TIM_SelectSlaveMode 三、配置分频器函数 TIM_SetIC1Prescaler TIM_SetIC2Prescaler TIM_SetIC3Prescaler T…

Camunda快速入门(四):设计一个带网关的流程

接上一篇文章&#xff1a;Camunda快速入门&#xff08;三&#xff09;&#xff1a;设计一个人工任务流程并配置表单 在本节中&#xff0c;您将学习如何使用 BPMN 2.0 排他网关&#xff08;Exclusive Gateways&#xff09;使流程更加动态。 1、添加两个网关 我们想修改我们的…

新版Java面试专题视频教程——框架篇

新版Java面试专题视频教程——框架篇 框架篇 01-框架篇介绍02-Spring-单例bean是线程安全的吗03-Spring-AOP相关面试题04-Spring-事务失效的场景05-Spring-bean的生命周期5.1 BeanDefinition 06-Spring-bean的循环依赖(循环引用)6.1 一般对象的循环依…

[AudioRecorder]iPhone苹果通话录音汉化破解版-使用巨魔安装-ios17绕道目前还不支持

首先你必须有巨魔才能使用&#xff01;&#xff01; 不会安装的&#xff0c;还没安装的移步这里&#xff0c;ios17 以上目前装不了&#xff0c;别看了&#xff1a;永久签名 | 网址分类目录 | 路灯iOS导航-苹果签名实用知识网址导航-各种iOS技巧-后厂村路灯 视频教程 【Audio…

重学Java 17.面向对象.5.方法参数和快速生成debug

不走心的努力&#xff0c;都是在敷衍自己 ——24.2.19 一、方法参数 1.基本数据类型 整型 byte short int long 浮点型 float double 字符型 char 布尔型 boolean 2.基本数据类型做方法参数传递 基本类型做方法参数传递&a…

消息队列-RabbitMQ:MQ作用分类、RabbitMQ核心概念及消息生产消费调试

1、MQ 的相关概念 1&#xff09;什么是 MQ MQ (message queue)&#xff0c;从字面意思上看&#xff0c;本质是个队列&#xff0c;FIFO 先入先出&#xff0c;只不过队列中存放的内容是 message 而已&#xff0c;还是一种跨进程的通信机制&#xff0c;用于上下游传递消息。在互…

[杂记]mmdetection3.x中的数据流与基本流程详解(数据集读取, 数据增强, 训练)

之前跑了一下mmdetection 3.x自带的一些算法, 但是具体的代码细节总是看了就忘, 所以想做一些笔记, 方便初学者参考. 其实比较不能忍的是, 官网的文档还是空的… 这次想写其中的数据流是如何运作的, 包括从读取数据集的样本与真值, 到数据增强, 再到模型的forward当中. 0. MMDe…

新增长100人研讨会:快消零售专场探讨招商加盟数字化转型实战

2024年2月2日下午&#xff0c;一场由纷享销客与杨国福集团联合主办的招商加盟数字化转型研讨会在上海成功举办。本次研讨会汇聚了众多快消零售业界的领军人物&#xff0c;共同探讨行业未来的新增长点。 会议伊始&#xff0c;杨国福集团数字化中心负责人王林林发表了主题演讲&a…