leetcode 01背包问题

在这里插入图片描述
典型的01背包问题可以暴力求解,直接将所有可能全部遍历然后挑选符合条件的即可,但这样时间复杂度过高,有2的n次方。

所以我们在这里采用动态规划的方式来做,并且,我们可以采用二维数组或者一维数组来做。

二维数组:dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

确定递推公式:如果不放入物品i,那么dp[i][j] = dp[i-1][j],如果放入了物品i,那么就应该是dp[i-1][j-weight[i]] + value[i]。二者直接取最大值即可。

初始化:首先我们考虑j=0的情况,此时背包任何东西都放不进去,所以就是dp[i][0]=0,之后我们考虑i=0,即放物品0的情况,只有当物品0的质量小于j的时候,才能把物品j放入,此时数组才是有值的,其他应该为0。所以我们只需要把当物品0的质量小于j的时候的值放入,其余位置全部置为0即可。

遍历顺序:二维数组解决01背包问题,先遍历物品或者背包都可以,直接从前往后遍历即可,因为每一个位置的元素是由这个元素上面位置和左上位置推导出来的(递归公式)。

打印数组:
在这里插入图片描述

public class BagProblem {public static void main(String[] args) {int[] weight = {1,3,4};int[] value = {15,20,30};int bagSize = 4;testWeightBagProblem(weight,value,bagSize);}/*** 动态规划获得结果* @param weight  物品的重量* @param value   物品的价值* @param bagSize 背包的容量*/public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){// 创建dp数组int goods = weight.length;  // 获取物品的数量int[][] dp = new int[goods][bagSize + 1];//**因为背包容量可能为0,所以需要bagSize+1个数组**// 初始化dp数组// 创建数组后,其中默认的值就是0for (int j = weight[0]; j <= bagSize; j++) {dp[0][j] = value[0];}// 填充dp数组for (int i = 1; i < weight.length; i++) {//物品编号是从0开始,所以i<weight.lengthfor (int j = 1; j <= bagSize; j++) {//背包容量从1开始遍历,最大是bagSize,可以取得到if (j < weight[i]) {/*** 当前背包的容量都没有当前物品i大的时候,是不放物品i的* 那么前i-1个物品能放下的最大价值就是当前情况的最大价值*/dp[i][j] = dp[i-1][j];} else {/*** 当前背包的容量可以放下物品i* 那么此时分两种情况:*    1、不放物品i*    2、放物品i* 比较这两种情况下,哪种背包中物品的最大价值最大*/dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);}}}// 打印dp数组for (int i = 0; i < goods; i++) {for (int j = 0; j <= bagSize; j++) {System.out.print(dp[i][j] + "\t");}System.out.println("\n");}}
}

当然本题也可以用一维数组来做
动规五部曲分析如下:

确定dp数组的定义
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

一维dp数组的递推公式
dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

一维dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

一维dp数组遍历顺序
代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j–) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

 public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWight = 4;testWeightBagProblem(weight, value, bagWight);}public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){int wLen = weight.length;//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值int[] dp = new int[bagWeight + 1];//遍历顺序:先遍历物品,再遍历背包容量for (int i = 0; i < wLen; i++){for (int j = bagWeight; j >= weight[i]; j--){dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}//打印dp数组for (int j = 0; j <= bagWeight; j++){System.out.print(dp[j] + " ");}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/480046.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot项目启动报java.nio.charset.MalformedInputException Input length = 1解决方案

报错详情 SpringBoot启动报错java.nio.charset.MalformedInputException: Input length 1 报错原因 出现这个的原因&#xff0c;就是解析yml文件时&#xff0c;中文字符集不是utf-8的原因&#xff0c;这是maven在项目编译时&#xff0c;默认字符集编码是GBK。 解决方式 检…

PCL 计算点云AABB包围盒的体积

目录 一、AABB包围盒二、代码实现三、结果展示四、相关链接本文由CSDN点云侠原创,原文链接。爬虫自重,把自己当个人。 一、AABB包围盒 AABB包围盒又称了 轴对齐包围盒,是点云包围盒里最简单的一种,其计算方法也极其简单。获取包围盒之后,根据包围盒的长宽高进行体积计算即…

小米14 ULTRA:重新定义手机摄影的新篇章

引言 随着科技的飞速发展&#xff0c;智能手机已经不仅仅是一个通讯工具&#xff0c;它更是我们生活中的一位全能伙伴。作为科技领域的佼佼者&#xff0c;小米公司再次引领潮流&#xff0c;推出了全新旗舰手机——小米14 ULTRA。这款手机不仅在性能上进行了全面升级&am…

spring boot3参数校验基本用法

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途。 目录 前置条件 前言 导入依赖 使用介绍 配置检验规则 开启校验 使用注意 全局异常捕获返回友好提示信息 常用的校…

LeetCode94.二叉树的中序遍历

题目 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 &#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2] 思路 中序遍历的顺序是左子树 -> 根节点 -> 右子树。因此&#xff0c;我们可以通过递归的方式遍历二叉树&…

Linux——进程替换

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、进程程序替换1、替换原理2、替换函数3、函数解释4、命名理解 二、用例测试1、execl测试2、…

C#分部类的应用:记录学生信息

目录 一、分部类及其用途 二、实例 再发一个分部类的应用&#xff0c;巩固一下。 一、分部类及其用途 C#中的部分类也被称为分部类。 C#中的部分类是一种将类的定义分成多个部分&#xff0c;每个部分都位于自己的文件中&#xff0c;然后在编译时合并在一起的机制。 部分类…

图像处理ASIC设计方法 笔记2 图像边界镜像处理

这本书是图像处理方面ASIC与DSP比较,讲了为什么要用ASIC做图像处理,它的特点和适用场景。读到第一章,(计算卷积的)工作窗口位于图像边界时镜像扩展后的情况。 输入仍然是逐行逐列串行图像数据流,但是在工作窗口内部,根据窗口中心像素的坐标判断窗口位于图像边界的具体位…

面试经典150题【11-20】

文章目录 面试经典150题【11-20】388.O(1) 时间插入、删除和获取随机元素238.除自身以外数组的乘积134加油站135.分发糖果42. 接雨水13.罗马数字12.整数 转 罗马数字58.最后一个单词的长度14.最长公共前缀151.反转字符串中的单词 面试经典150题【11-20】 388.O(1) 时间插入、删…

赞:java使用easy-excel导出数据的通用模板思路

我们在项目中都会有导入导出的功能&#xff0c;这篇文章主要是讲导出的&#xff0c;导入我会在另外一篇博客文章中讲解。 现在我们开始。 首先&#xff1a;需要在项目中的pom.xml中导入easy-excel的依赖 <!--使用esay-excel进行导入导出 --> <dependency><gr…

友点CMS image_upload.php 文件上传漏洞复现

0x01 产品简介 友点CMS是一款高效且灵活的网站管理系统,它为用户提供了简单易用的界面和丰富的功能。无论是企业还是个人,都能通过友点CMS快速搭建出专业且美观的网站。该系统支持多种内容类型和自定义模板,方便用户按需调整。同时,它具备强大的SEO功能,能提升网站在搜索…

Flink理论—Flink架构设计

Flink架构设计 Flink 是一个分布式系统&#xff0c;需要有效分配和管理计算资源才能执行流应用程序。它集成了所有常见的集群资源管理器&#xff0c;例如Hadoop YARN&#xff0c;但也可以设置作为独立集群甚至库运行,例如Spark 的 Standalone Mode 本节概述了 Flink 架构&…