【AIGC】Gemma和ChatGLM3-6B使用体验

在这里插入图片描述
近期,谷歌发布了全新的开源模型Gemma,同时智谱AI和清华大学KEG实验室合作推出了ChatGLM3-6B。这两个模型都是先进的对话预训练模型,本文将对它们进行对比,并分享使用体验。

先上效果

ChatGLM3-6B:

ChatGLM3

Gemma(20亿参数):

ChatGLM3

模型概述

Gemma:

Gemma 是谷歌推出的一种先进的轻量级开放模型系列。 受到Gemini模型启发,采用了与创建Gemini相同的研究和技术。
名称来自拉丁语中意为“宝石”的单词"gemma",象征着该模型的珍贵和价值。

ChatGLM3-6B:

ChatGLM3-6B是智谱AI和清华大学KEG实验室联合发布的一款开源对话预训练模型。
作为ChatGLM3系列中的一员,ChatGLM3-6B拥有大约60亿个参数。 该模型旨在提供更智能、更流畅的对话生成能力。

对比评测

  1. 文本生成能力 Gemma: Gemma可能在轻量级的设置下表现出色,但其生成能力可能不如参数更多的模型。 ChatGLM3-6B: 作为参数更多的模型,ChatGLM3-6B在文本生成方面可能更具优势,尤其在复杂对话场景下可能表现更佳。
  2. 资源消耗 Gemma: 由于是轻量级模型,Gemma可能在资源消耗方面更为节省,适用于嵌入式设备和资源受限环境。 ChatGLM3-6B: ChatGLM3-6B可能需要更多的计算资源来运行,适用于更大规模的应用场景。
  3. 对话质量 Gemma: 由于轻量级模型可能在对话质量方面表现较弱,特别是在处理复杂语境和多轮对话时可能不如参数更多的模型。 ChatGLM3-6B: ChatGLM3-6B可能在对话质量方面表现更好,尤其是在更复杂的对话场景和需要更多上下文理解的情况下。

使用体验

  1. Gemma Gemma可能在资源受限的环境下运行效果更好,适用于一些嵌入式设备和轻量级应用场景。 由于其轻量级的特点,Gemma可能更容易部署和集成到各种应用中,在12GB显存运行飞快。使用时还遇到Gemma在中文支持方面存在一些问题,并且可能忽略用户提示。

  2. ChatGLM3-6B ChatGLM3-6B可能在对话质量方面表现更出色,适用于需要更高水平对话交互的应用场景。 由于其参数更多,ChatGLM3-6B可能需要更多的计算资源,在我的12GB显存运行,我不能忍受他的运行速度。

结论
综上所述,Gemma和ChatGLM3-6B都是优秀的对话预训练模型,但在不同的应用场景和任务中可能表现出不同的优势。Gemma适用于资源受限的环境和轻量级应用场景,而ChatGLM3-6B可能更适用于需要更高水平对话交互和更复杂对话理解的场景。选择适合自己需求的模型需要综合考虑其特点、应用场景和资源要求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485727.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安全中国云 | 亚信安全与云宏完成产品互认 共筑云安全未来

近日,亚信安全与云宏信息科技股份有限公司(以下简称云宏)进一步强化云上合作,完成多款产品兼容性互认。亚信安全云主机安全产品(DeepSecurity)与云宏CNware WinSphere服务器虚拟化软件、CNware WinStack虚拟…

【嵌入式学习】QT-Day2-Qt基础

1> 思维导图 https://lingjun.life/wiki/EmbeddedNote/20QT 2>登录界面优化 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff…

解决IDEA git 提交慢的问题

文章目录 前言解决IDEA git 提交慢的问题 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不会太差,实在白嫖的话,那欢迎常来啊!!! 解…

LeetCode 热题 100 | 二叉树(终)

目录 1 二叉树小结 1.1 模式一 1.2 模式二 2 236. 二叉树的最近公共祖先 3 124. 二叉树中的最大路径和 菜鸟做题(返校版),语言是 C 1 二叉树小结 菜鸟碎碎念 通过对二叉树的练习,我对 “递归” 有了一些肤浅的理解。…

详解NLP多任务统一框架T5:揭秘T5的全能之谜

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer 1910.10683.pdf (arxiv.org) 1.Abstract 预训练可以让模型学习到可以被迁移到下游任务重的通用能力和知识。在迁移学习中,模型首先在数据丰富的任务上进行预训练&#xff0c…

AI绘画与修图:重塑数字艺术的新纪元

文章目录 一、AI绘画与修图的原理二、AI绘画的应用三、AI修图的优势四、面临的挑战五、未来发展趋势《AI绘画与修图实战:PhotoshopFirefly从入门到精通 轻松玩转AI绘画与修图实战》亮点内容简介作者简介 随着人工智能技术的飞速发展,AI绘画与修图已经成为…

【Linux取经路】文件系统之缓冲区

文章目录 一、先看现象二、用户缓冲区的引入三、用户缓冲区的刷新策略四、为什么要有用户缓冲区五、现象解释六、结语 一、先看现象 #include <stdio.h> #include <string.h> #include <unistd.h>int main() {const char* fstr "Hello fwrite\n"…

使用k-近邻算法改进约会网站的配对效果(kNN)

目录 谷歌笔记本&#xff08;可选&#xff09; 准备数据&#xff1a;从文本文件中解析数据 编写算法&#xff1a;编写kNN算法 分析数据&#xff1a;使用Matplotlib创建散点图 准备数据&#xff1a;归一化数值 测试算法&#xff1a;作为完整程序验证分类器 使用算法&…

vulvhub-----Hacker-KID靶机

打靶详细教程 1.网段探测2.端口服务扫描3.目录扫描4.收集信息burp suite抓包 5.dig命令6.XXE漏洞读取.bashrc文件 7.SSTI漏洞8.提权1.查看python是否具备这个能力2.使用python执行exp.py脚本&#xff0c;如果提权成功&#xff0c;靶机则会开放5600端口 1.网段探测 ┌──(root…

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁

PublishFolderCleaner – Github 测试环境: .Net 8 Program.cs 代码 // https://github.com/dotnet-campus/dotnetcampus.DotNETBuildSDK/tree/master/PublishFolderCleanerusing System.Diagnostics; using System.Text;// 名称, 不用写 .exe var exeName "AbpDemo&…

基于Spring Boot+Mybatis+Shiro+EasyUI的宠物医院管理系统

项目介绍 本系统前台面向的用户是客户&#xff0c;客户可以进行预约、浏览医院发布的文章、进入医院商城为宠物购物、如有疑问可以向官方留言、还可以查看关于自己的所有记录信息&#xff0c;如&#xff1a;看病记录、预约记录、疫苗注射记录等。后台面向的用户是医院人员&…

一些可以参考的文档集合16

之前的文章集合: 一些可以参考文章集合1_xuejianxinokok的博客-CSDN博客 一些可以参考文章集合2_xuejianxinokok的博客-CSDN博客 一些可以参考的文档集合3_xuejianxinokok的博客-CSDN博客 一些可以参考的文档集合4_xuejianxinokok的博客-CSDN博客 一些可以参考的文档集合5…