挑战杯 基于大数据的股票量化分析与股价预测系统

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 设计原理
    • QTCharts
    • arma模型预测
    • K-means聚类算法
    • 算法实现关键问题说明
  • 4 部分核心代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的股票量化分析与股价预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于大数据的股票可视化分析平台设计,对股票数据进行预处理,清洗以及可视化分析,同时设计了软件界面。

2 实现效果

价格可视化
在这里插入图片描述
魔梯访问与指标计算

在这里插入图片描述
聚类分析
在这里插入图片描述

3 设计原理

QTCharts

简介

QtCharts是Qt自带的组件库,其中包含折线、曲线、饼图、棒图、散点图、雷达图等各种常用的图表。而在地面站开发过程中,使用折线图可以对无人机的一些状态数据进行监测,更是可以使用散点图来模拟飞机所在位置,实现平面地图的感觉。

使用Qt
Charts绘制,大概可以分为四个部分:数据(QXYSeries)、图表(QChart)、坐标轴(QAbstractAXis)和视图(QChartView)。这里就不一一给大家介绍了,下面给大家说一下QtCharts的配置安装。

QtCharts模块的C++类

在这里插入图片描述

arma模型预测

简介

ARMA模型,又称为ARMA
(p,q)模型。其核心思想就是当前正如名字所显示的,整个模型的核心就是要确定p和q这两个参数。其中,p决定了我们要用几个滞后时期的价格数据,而q决定了我们要用几个滞后时期的预测误差。

在这里插入图片描述

简单来说,ARMA模型做了两件事。一是基于趋势理论,用历史数据来回归出一个当前的价格预测,这个预测反映了自回归的思想。但是这个预测必然是有差异的,所以ARMA模型根据历史的预测误差也回归出一个当前的误差预测,这个预测反映了加权平均的思想。用价格预测加上误差预测修正,才最终得到一个理论上更加精确的最终价格预测。

比起简单的自回归模型或者以时间为基础的简单趋势预测模型,ARMA模型最大的优势,在于综合了趋势理论和均值回归理论,理论上的精确度会比较高。

    '''自回归滑动平均模型'''from statsmodels.tsa.arima_model import ARMAfrom itertools import product​     ```
def myARMA(data):p = range(0, 9)q = range(0, 9)parameters = list(product(p, q))  # 生成(p,q)从(0,0)到(9,9)的枚举best_aic = float('inf')result = Nonefor param in parameters:try:model = ARMA(endog=data, order=(param[0], param[1])).fit()except ValueError:print("参数错误:", param)continueaic = model.aicif aic < best_aic:  # 选取最优的aicbest_aic = model.aicresult = (model, param)return result
```

K-means聚类算法

基本原理

k-Means算法是一种使用最普遍的聚类算法,它是一种无监督学习算法,目的是将相似的对象归到同一个簇中。簇内的对象越相似,聚类的效果就越好。该算法不适合处理离散型属性,但对于连续型属性具有较好的聚类效果。

聚类效果判定标准

使各个样本点与所在簇的质心的误差平方和达到最小,这是评价k-means算法最后聚类效果的评价标准。

在这里插入图片描述

算法实现步骤

1)选定k值

2)创建k个点作为k个簇的起始质心。

3)分别计算剩下的元素到k个簇的质心的距离,将这些元素分别划归到距离最小的簇。

4)根据聚类结果,重新计算k个簇各自的新的质心,即取簇中全部元素各自维度下的算术平均值。

5)将全部元素按照新的质心重新聚类。

6)重复第5步,直到聚类结果不再变化。

7)最后,输出聚类结果。

算法缺点

虽然K-Means算法原理简单,但是有自身的缺陷:

1)聚类的簇数k值需在聚类前给出,但在很多时候中k值的选定是十分难以估计的,很多情况我们聚类前并不清楚给出的数据集应当分成多少类才最恰当。

2)k-means需要人为地确定初始质心,不一样的初始质心可能会得出差别很大的聚类结果,无法保证k-means算法收敛于全局最优解。

3)对离群点敏感。

4)结果不稳定(受输入顺序影响)。

5)时间复杂度高O(nkt),其中n是对象总数,k是簇数,t是迭代次数。

算法实现关键问题说明

K值的选定说明

根据聚类原则:组内差距要小,组间差距要大。我们先算出不同k值下各个SSE(Sum of
squared
errors)值,然后绘制出折线图来比较,从中选定最优解。从图中,我们可以看出k值到达5以后,SSE变化趋于平缓,所以我们选定5作为k值。

在这里插入图片描述

初始的K个质心选定说明

初始的k个质心选定是采用的随机法。从各列数值最大值和最小值中间按正太分布随机选取k个质心。

关于离群点

离群点就是远离整体的,非常异常、非常特殊的数据点。因为k-
means算法对离群点十分敏感,所以在聚类之前应该将这些“极大”、“极小”之类的离群数据都去掉,否则会对于聚类的结果有影响。离群点的判定标准是根据前面数据可视化分析过程的散点图和箱线图进行判定。

4 部分核心代码

#include "kmeans.h"
#include "ui_kmeans.h"kmeans::kmeans(QWidget *parent) :QDialog(parent),ui(new Ui::kmeans)
{this->setWindowFlags(Qt::Dialog | Qt::WindowMinMaxButtonsHint | Qt::WindowCloseButtonHint);ui->setupUi(this);
}kmeans::~kmeans()
{delete ui;
}void kmeans::closeEvent(QCloseEvent *)
{end_flag=true;
}void kmeans::on_pushButton_clicked()
{end_flag=false;//读取数据QFile sharpe("sharpe.txt");sharpe.open(QIODevice::ReadOnly|QIODevice::Text);std::vector<std::array<double,2>> data;while(!sharpe.atEnd()){QStringList linels=QString(sharpe.readLine()).split(',');qreal mean=linels[3].toDouble();qreal sd=linels[4].toDouble();if(mean>-0.06&&mean<0.06&&sd<0.12)data.push_back({mean,sd});}std::random_shuffle(data.begin(),data.end());sharpe.close();//聚类ui->pushButton->setText("聚类中...");QApplication::processEvents();auto labels=std::get<1>(dkm::kmeans_lloyd(data,9));ui->pushButton->setText("开始");QApplication::processEvents();//作图QChart *chart = new QChart();//chart->setAnimationOptions(QChart::SeriesAnimations);//chart->legend()->setVisible(false);QList<QScatterSeries*> serieses;QList<QColor> colors{QColor(Qt::black),QColor(Qt::cyan),QColor(Qt::red),QColor(Qt::green),QColor(Qt::magenta),QColor(Qt::yellow),QColor(Qt::gray),QColor(Qt::blue),QColor("#A27E36")};for(int i=0;i<9;i++){QScatterSeries *temp = new QScatterSeries();temp->setName(QString::number(i));temp->setColor(colors[i]);temp->setMarkerSize(10.0);serieses.append(temp);chart->addSeries(temp);}chart->createDefaultAxes();/*v4
-------------------------------------------------------------Percentiles      Smallest1%     -.023384        -.359855%    -.0115851       -.349373
10%    -.0078976       -.325249       Obs             613,849
25%    -.0037067       -.324942       Sum of Wgt.     613,84950%     .0000567                      Mean           .0004866Largest       Std. Dev.      .0130231
75%     .0041332        1.28376
90%     .0091571        1.52169       Variance       .0001696
95%     .0132541        2.73128       Skewness       95.21884
99%     .0273964        4.56203       Kurtosis       28540.15v5
-------------------------------------------------------------Percentiles      Smallest1%     .0073016       4.68e-075%     .0112397       7.22e-07
10%     .0135353       7.84e-07       Obs             613,849
25%     .0180452       8.21e-07       Sum of Wgt.     613,84950%     .0248626                      Mean           .0282546Largest       Std. Dev.      .0213631
75%     .0343356         3.2273
90%     .0458472        3.32199       Variance       .0004564
95%     .0549695        4.61189       Skewness       68.11651
99%     .0837288        4.75981       Kurtosis       11569.69*/QValueAxis *axisX = qobject_cast<QValueAxis *>(chart->axes(Qt::Horizontal).at(0));axisX->setRange(-0.06,0.06);axisX->setTitleText("平均值");axisX->setLabelFormat("%.2f");QValueAxis *axisY = qobject_cast<QValueAxis *>(chart->axes(Qt::Vertical).at(0));axisY->setRange(0,0.12);axisY->setTitleText("标准差");axisY->setLabelFormat("%.2f");ui->widget->setRenderHint(QPainter::Antialiasing);ui->widget->setChart(chart);int i=0;auto labelsiter=labels.begin();for(auto &&point : data){if(end_flag)return;serieses[*labelsiter]->append(QPointF(point[0],point[1]));i++;labelsiter++;if(i%1000==0){QApplication::processEvents();}}
}void kmeans::on_pushButton_2_clicked()
{end_flag=true;
}

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/488141.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ES通用查询页面使用说明

前言:ES语法比较复杂,需要专门的学习,而且查询工具不太友好, 对公司运维人员使用有点困难,所以花了个时间做了一个页面,方便运维人员使用,如下。 也不难,有兴趣的朋友可以私聊发源码。 开发帮助-ES数据查询 搜索 输入要查看的文档索引,文档类型后点【查询】即可 搜…

pikachu靶场-File Inclusion

介绍&#xff1a; File Inclusion(文件包含漏洞)概述 文件包含&#xff0c;是一个功能。在各种开发语言中都提供了内置的文件包含函数&#xff0c;其可以使开发人员在一个代码文件中直接包含&#xff08;引入&#xff09;另外一个代码文件。 比如 在PHP中&#xff0c;提供了&…

测试计划、测试方案、测试策略、测试用例的区别

一 测试计划 测试计划是指描述了要进行的测试活动的范围、方法、资源和进度的文档。它主要包括测试项、被测特性、各阶段的测试任务、时间进度安排&#xff0c;谁执行任务和风险控制等&#xff0c;可以包括测试策略。 二 测试方案 测试方案是指描述需要测试的特性、测试的方…

C#入门详解_02_初识各类应用程序(学习方法;console;winform;WPF;C#语言还可以进行的网站开发、平板、手机程序开发方法)

本节主要介绍各种可以用C#编写的应用程序。 文章目录 1. 编程学习的捷径2. 编写我们的第一个程序--Hello,World!2.1 Console-控制台2.2 Windows Forms (Old)2.3 WPF(Windows Presentation Foundation)2.4 高版本VS进行C#编程(了解c#还可以做什么)2.4.1 ASP.NET Web Forms (Old)…

前端工程化面试题 | 16.精选前端工程化高频面试题

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

算法沉淀——FloodFill 算法(leetcode真题剖析)

算法沉淀——FloodFill 算法 01.图像渲染02.岛屿数量03.岛屿的最大面积04.被围绕的区域05.太平洋大西洋水流问题06.扫雷游戏07.衣橱整理 Flood Fill&#xff08;泛洪填充&#xff09;算法是一种图像处理的基本算法&#xff0c;用于填充连通区域。该算法通常从一个种子点开始&am…

解决Maven爆红以及解决 Idea 卡在 Resolving问题

关于 Idea 卡在 Resolving&#xff08;前提是Maven的setting.xml中配置好了阿里云和仓库&#xff09; 参考文章https://blog.csdn.net/jiangyu1013/article/details/95042611 解决Maven爆红参考文章https://devpress.csdn.net/beijing/656d993b76f0791b6eca7bb0.html?dp_toke…

什么是柔性事务?

概念 柔性事务&#xff0c;是业内解决分布式事务的主要方案。所谓柔性事务&#xff0c;相比较与数据库事务中的ACID这种刚性事务来说&#xff0c;柔性事务保证的是“基本可用&#xff0c;最终一致。”这其实就是基于BASE理论&#xff0c;保证数据的最终一致性。 虽然柔性事务…

关于使用Mxnet GPU版本运行DeepAR报错解决方案

1.引言 我们经常使用GPU来训练和部署神经网络&#xff0c;因为与CPU相比&#xff0c;它提供了更多的计算能力。在本教程中&#xff0c;我们将介绍如何将GPU与MXNet GluonTS一起使用。 首先&#xff0c;确保您的机器中至少有一个Nvidia GPU&#xff0c;并正确安装了CUDA以及CUDN…

Linux实验记录:使用PXE+Kickstart无人值守安装服务

前言&#xff1a; 本文是一篇关于Linux系统初学者的实验记录。 参考书籍&#xff1a;《Linux就该这么学》 实验环境&#xff1a; VmwareWorkStation 17——虚拟机软件 RedHatEnterpriseLinux[RHEL]8——红帽操作系统 备注&#xff1a; 实际生产中安装操作系统的工作&…

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(二)

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(二) 大家好 我是寸铁&#x1f44a; 金三银四&#xff0c;树、dfs、bfs、回溯、递归是必考的知识点✨ 快跟着寸铁刷起来&#xff01;面试顺利上岸&#x1f44b; 喜欢的小伙伴可以点点关注 &#x1f49d; 上期回顾 感谢大家的支持&am…

Vue3 (unplugin-auto-import自动导入的使用)

安装 参考链接 npm i -D unplugin-auto-importvite.config.ts里面配置 import AutoImport from unplugin-auto-import/viteAutoImport({imports:[ vue,vue-router]})重新运行项目会生成一个auto-imports.d.ts的文件 /* eslint-disable */ /* prettier-ignore */ // ts-nochec…