Redis实现滑动窗口限流

常见限流算法

  1. 固定窗口算法

    在固定的时间窗口下进行计数,达到阈值就拒绝请求。固定窗口如果在窗口开始就打满阈值,窗口后半部分进入的请求都会拒绝。

  2. 滑动窗口算法

    在固定窗口的基础上,窗口会随着时间向前推移,可以在时间内平滑控制流量,解决固定窗口出现的突发流量问题。

  3. 漏斗算法

    请求来了先进入漏斗,漏斗以恒定的速率放行请求。

  4. 令牌桶算法

    在令牌桶中,以恒定的速率放入令牌,令牌桶也有一定的容量,如果满了令牌就无法放进去了。拿到令牌的请求通过,并消耗令牌,如果令牌桶中令牌为空,则会丢弃该请求。

redis实现滑动窗口算法

当有请求来的时候记录时间戳,统计窗口内请求的数量时只需要统计redis中记录的数量。可以使用redis中的zset结构来存储。key可以设置为请求的资源名,同时根据限流的对象,往key中加入限流对象信息。比如根据ip限制访问某个资源的流量,可以使用方法名+ip作为key。score设置为时间戳。value则可以根据请求参数等信息生成MD5,或者直接生成UUID来存入,防止并发时多个请求存入的score和value一样导致只存入一个数据。

步骤如下:

  1. 定义时间窗口
  2. 请求到来,丢弃时间窗口之外的数据,ZREMRANGEBYSCORE KEYS[i], -inf, window_start
  3. 判断时间窗口内的请求个数是否达到阈值。ZCARD KEYS[i] 要小于阈值
  4. 如果小于则通过zadd加入,超过则返回不放行

lua脚本:

local window_start = tonumber(ARGV[1])- tonumber(ARGV[2])
redis.call('ZREMRANGEBYSCORE', KEYS[1], '-inf', window_start)
local current_requests = redis.call('ZCARD', KEYS[1])
if current_requests < tonumber(ARGV[3]) thenredis.call('ZADD', KEYS[1], tonumber(ARGV[1]), ARGV[4])return 1
elsereturn 0
end

java通过注解+切面实现限流

在java中,我们的需求是对资源可以进行多种规则的限流。注解可以定义不同类型的限流,如:全局限流,根据IP限流,根据用户限流。对每种类型的限流可以在一个注解中定义多个限流规则。

整体效果如下:

@RateLimiter(rules = {@RateLimitRule(time = 50,count = 100),@RateLimitRule(time = 20,count = 10)}, type = LimitType.IP)
@RateLimiter(rules = {@RateLimitRule(time = 60,count = 1000)}, type = LimitType.DEFAULT)
public void update(){}

定义注解

定义了三个注解:

  1. RateLimiter:限流注解
  2. RateLimitRule:限流规则
  3. RateLimiters:存放多个限流注解的容器,为了可以重复使用该注解

RateLimiter:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
// 支持重复注解
@Repeatable(value = RateLimiters.class)
public @interface RateLimiter {/*** 限流键前缀** @return*/String key() default "rate_limit:";/*** 限流规则** @return*/RateLimitRule[] rules() default {};/*** 限流类型** @return*/LimitType type() default LimitType.DEFAULT;
}

RateLimitRule:

public @interface RateLimitRule {/*** 时间窗口, 单位秒** @return*/int time() default 60;/*** 允许请求数** @return*/int count() default 100;
}

RateLimiters:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface RateLimiters {RateLimiter[] value();
}

改造lua脚本

在实现切面之前,我们需要对lua脚本进行改造。我们的需求对资源可以进行多种规则的限流。根据限流类型和限流规则可以组合出不同的key,比如我们要对某个资源进行以下规则限流:全局限流(60s,1000次; 600s,5000次),根据ip限流(2s,5次)。

根据这些规则我们就需要使用3个zset分别来存放请求记录。并且当三个规则都没达到阈值时才放行请求,否则拒绝请求。

对lua脚本改造,支持多个key。

 
local flag = 1
for i = 1, #KEYS dolocal window_start = tonumber(ARGV[1])- tonumber(ARGV[(i-1)*3+2])redis.call('ZREMRANGEBYSCORE', KEYS[i], '-inf', window_start)local current_requests = redis.call('ZCARD', KEYS[i])if current_requests < tonumber(ARGV[(i-1)*3+3]) thenelseflag = 0end
end
if flag == 1 thenfor i = 1, #KEYS doredis.call('ZADD', KEYS[i], tonumber(ARGV[1]), ARGV[(i-1)*3+4])end
end
return flag

定义切面

定义一个切面实现限流逻辑:RateLimiterAspect

首先定义切点,由于我们可以重复使用注解,所以需要把RateLimiter和RateLimiters都定义为切点

@Pointcut("@annotation(com.imgyh.framework.annotation.RateLimiter)")
public void rateLimiter() {
}@Pointcut("@annotation(com.imgyh.framework.annotation.RateLimiters)")
public void rateLimiters() {
}

在前置通知中实现限流逻辑:

主要流程如下:

  1. 把所有的RateLimiter都拿到,解析出限流规则和限流类型
  2. 根据限流规则和限流类型,获取所有的key和参数,为调用lua脚本做准备
  3. 调用lua脚本,根据返回值判断是否放行请求
// 定义切点之前的操作
@Before("rateLimiter() || rateLimiters()")
public void doBefore(JoinPoint point) {try {// 从切点获取方法签名MethodSignature signature = (MethodSignature) point.getSignature();// 获取方法Method method = signature.getMethod();String name = point.getTarget().getClass().getName() + "." + signature.getName();// 获取日志注解RateLimiter rateLimiter = method.getAnnotation(RateLimiter.class);RateLimiters rateLimiters = method.getAnnotation(RateLimiters.class);List<RateLimiter> limiters = new ArrayList<>();if (ObjectUtils.isNotNull(rateLimiter)) {limiters.add(rateLimiter);}if (ObjectUtils.isNotNull(rateLimiters)) {limiters.addAll(Arrays.asList(rateLimiters.value()));}if (!allowRequest(limiters, name)) {throw new ServiceException("访问过于频繁,请稍候再试");}} catch (ServiceException e) {throw e;} catch (Exception e) {throw new RuntimeException("服务器限流异常,请稍候再试");}
}/*** 是否允许请求** @param rateLimiters 限流注解* @param name         方法全名* @return 是否放行*/
private boolean allowRequest(List<RateLimiter> rateLimiters, String name) {List<String> keys = getKeys(rateLimiters, name);Object[] args = getArgs(rateLimiters);Object res = redisTemplate.execute(limitScript, keys, args);return ObjectUtils.isNotNull(res) && (Long) res == 1L;
}/*** 获取限流的键** @param rateLimiters 限流注解* @param name         方法全名* @return*/
private List<String> getKeys(List<RateLimiter> rateLimiters, String name) {List<String> keys = new ArrayList<>();for (RateLimiter rateLimiter : rateLimiters) {String key = rateLimiter.key();RateLimitRule[] rules = rateLimiter.rules();LimitType type = rateLimiter.type();StringBuilder sb = new StringBuilder();sb.append(key).append(name);if (LimitType.IP == type) {String ipAddr = IpUtils.getIpAddr();sb.append("_").append(ipAddr);} else if (LimitType.USER == type) {Long userId = SecurityUtils.getUserId();sb.append("_").append(userId);}for (RateLimitRule rule : rules) {int time = rule.time() * 1000;int count = rule.count();StringBuilder builder = new StringBuilder(sb);builder.append("_").append(time).append("_").append(count);keys.add(builder.toString());}}return keys;
}/*** 获取需要的参数** @param rateLimiters 限流注解* @return*/
private Object[] getArgs(List<RateLimiter> rateLimiters) {List<Object> args = new ArrayList<>();args.add(System.currentTimeMillis());for (RateLimiter rateLimiter : rateLimiters) {RateLimitRule[] rules = rateLimiter.rules();for (RateLimitRule rule : rules) {int time = rule.time() * 1000;int count = rule.count();args.add(time);args.add(count);args.add(IdUtils.fastSimpleUUID());}}return args.toArray();
}

实例demo演示

demo源码仓库:github.com/imgyh/devel…

定义接口,并添加限流注解。

限制对某个用户只能1s中访问2次。对接口整体10s中访问50次,60秒访问100次。

当某个用户一秒钟请求超过两次时,抛出异常。

参考资源

  1. Hollis,《Java面试宝典》
  2. 一文搞懂高频面试题之限流算法,从算法原理到实现,再到对比分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/491078.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安装 WSL 报错 Error code: Wsl/WININET_E_NAME_NOT_RESOLVED 问题解决

问题描述 在执行 wsl --install 安装Windows子系统Linux WSL (Windows Subsystem for Linux) 时报错&#xff1a; 无法从“https://raw.githubusercontent.com/microsoft/WSL/master/distributions/DistributionInfo.json”中提取列表分发。无法解析服务器的名称或地址 Error…

为什么会员模式是一种明智的扩张方式

会员模式看起来是一种有趣、令人兴奋且很酷的业务发展方式&#xff0c;但当您真正深入研究时&#xff0c;您可能会惊讶地发现它远不止于此。 会员资格为我们提供了一条道德扩展的途径。我们可以就地为客户提供服务。 这就是为什么会员模式可能成为您企业的下一步&#xff0c;…

【监控】grafana图表使用快速上手

目录 1.前言 2.连接 3.图表 4.job和path 5.总结 1.前言 上一篇文章中&#xff0c;我们使用spring actuatorPrometheusgrafana实现了对一个spring boot应用的可视化监控。 【监控】Spring BootPrometheusGrafana实现可视化监控-CSDN博客 其中对grafana只是打开了一下&am…

Jmeter学习系列之七:并发线程组Concurrency Thread Group详解

一、Concurrency Thread Group的介绍 Concurrency Thread Group提供了用于配置多个线程计划的简化方法该线程组目的是为了保持并发水平,意味着如果并发线程不够,则在运行线程中启动额外的线程和Standard Thread Group不同,它不会预先创建所有线程,因此不会使用额外的内存对…

算法分析-面试1-字符串

文章目录 前言一、分类&#xff1a;看看就行了二、字符串API&#xff1a;创建和初始化&#xff1a;查询操作&#xff1a;比较操作&#xff1a;修改操作&#xff1a;截取操作&#xff1a;分割操作&#xff1a;格式化操作&#xff1a;连接操作&#xff08;Java 8 及以后&#xff…

【OneAPI】渣土车检测API

OneAPI新接口发布&#xff1a;渣土车检测 识别一张图中是否存在渣土车并返回渣土车位置。 API地址&#xff1a;POST https://oneapi.coderbox.cn/openapi/api/detect/mucktruck 请求参数 BODY参数 参数名类型必填含义说明imageUrlstring是图片地址- 响应参数 参数名类型…

day4:对话框与事件

使用qt搭建一个简易的闹钟系统 #include "second.h" #include "ui_second.h"second::second(QWidget *parent) :QWidget(parent),ui(new Ui::second) {ui->setupUi(this);this->setWindowFlag(Qt::FramelessWindowHint);this->setAttribute(Qt::…

小程序--组件通信

一、父传子 与vue利用props类似&#xff0c;小程序是利用自定义属性&#xff1a;properties // components/my-nav/my-nav.js Component({// 小程序组件默认样式是隔离&#xff0c;addGlobalClass设置为true可允许外部修改样式options: {addGlobalClass: true,// 只要使用到具…

《高效使用Redis》- 由面试题“Redis是否为单线程”引发的思考

由面试题“Redis是否为单线程”引发的思考 很多人都遇到过这么一道面试题&#xff1a;Redis是单线程还是多线程&#xff1f;这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程&#xff0c;说复杂是因为这个答案其实并不准确。 难道Redis不是单线程&#xff1f…

【数据结构】图——最短路径

最短路径问题&#xff1a;从在带权有向图G中的某一顶点出发&#xff0c;找出一条通往另一顶点的最短路径&#xff0c;最短也就是沿路径各边的权值总和达到最小。 最短路径分为图中单源路径和多源路径。 本文会介绍Dijkstra和Bellman-Ford解决单源路径的问题 Floyd-Warshall解…

好物周刊#40:多功能文件管理器

https://github.com/cunyu1943/JavaPark https://yuque.com/cunyu1943 村雨遥的好物周刊&#xff0c;记录每周看到的有价值的信息&#xff0c;主要针对计算机领域&#xff0c;每周五发布。 一、项目 1. 中国节假日补班日历 中国节假日、调休、补班日历&#xff0c;ICS 格式…

多输入回归预测|GWO-CNN-LSTM|灰狼算法优化的卷积-长短期神经网络回归预测(Matlab)

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、算法介绍&#xff1a; 灰狼优化算法&#xff1a; 卷积神经网络-长短期记忆网络&#xff1a; 四、完整程序下载&#xff1a; 一、程序及算法内容…