代码随想录算法训练营第四一天 | 背包问题

目录

  • 背包问题
    • 01背包
      • 二维dp数组01背包
      • 一维 dp 数组(滚动数组)
      • 分割等和子集

LeetCode

背包问题

在这里插入图片描述

01背包

有n件物品和一个最多能背重量为 w 的背包,第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

暴力的解法: 回溯,时间复杂度就是 o ( 2 n ) o(2^n) o(2n),这里的n表示物品数量。

暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化。

  • 举例: 背包最大重量为4。
重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

二维dp数组01背包

  1. dp数组:dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

  2. 递推公式:两个方向推出来dp[i][j]

    • 不放物品 i :由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
    • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
      所以递推公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  3. 初始化

    如果背包容量 j 为 0 的话,dp[i][0], 无论选取哪些物品,背包价值总和一定为0。

    状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

    当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

在这里插入图片描述

  1. 遍历顺序

    两个遍历维度: 物品与背包重量

    先遍历物品,再遍历背包的过程如图所示:

    在这里插入图片描述

    先遍历背包,再遍历物品呢,如图:

    在这里插入图片描述
    在这里插入图片描述

public class BagProblem {public static void main(String[] args) {int[] weight = {1,3,4};int[] value = {15,20,30};int bagSize = 4;testWeightBagProblem(weight,value,bagSize);}/*** 动态规划获得结果* @param weight  物品的重量* @param value   物品的价值* @param bagSize 背包的容量*/public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){// 创建dp数组int goods = weight.length;  // 获取物品的数量int[][] dp = new int[goods][bagSize + 1];// 初始化dp数组// 创建数组后,其中默认的值就是0for (int j = weight[0]; j <= bagSize; j++) {dp[0][j] = value[0];}// 填充dp数组for (int i = 1; i < weight.length; i++) {for (int j = 1; j <= bagSize; j++) {if (j < weight[i]) {/*** 当前背包的容量都没有当前物品i大的时候,是不放物品i的* 那么前i-1个物品能放下的最大价值就是当前情况的最大价值*/dp[i][j] = dp[i-1][j];} else {/*** 当前背包的容量可以放下物品i* 那么此时分两种情况:*    1、不放物品i*    2、放物品i* 比较这两种情况下,哪种背包中物品的最大价值最大*/dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);}}}// 打印dp数组for (int i = 0; i < goods; i++) {for (int j = 0; j <= bagSize; j++) {System.out.print(dp[i][j] + "\t");}System.out.println("\n");}}
}

一维 dp 数组(滚动数组)

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。


dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组初始化的时候,都初始为0就可以了。

注意: 遍历背包的顺序是倒序遍历,保证物品只放入一次。

从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWight = 4;testWeightBagProblem(weight, value, bagWight);
}public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){int wLen = weight.length;//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值int[] dp = new int[bagWeight + 1];//遍历顺序:先遍历物品,再遍历背包容量for (int i = 0; i < wLen; i++){for (int j = bagWeight; j >= weight[i]; j--){dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}//打印dp数组for (int j = 0; j <= bagWeight; j++){System.out.print(dp[j] + " ");}

分割等和子集

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

本题要求集合里能否出现总和为 sum / 2 的子集。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。

dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

dp[0]一定是0。如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

class Solution {public boolean canPartition(int[] nums) {if(nums == null || nums.length == 0) return false;int n = nums.length;int sum = 0;for (int num : nums) {sum += num;}if (sum % 2 != 0) return false;int target = sum / 2;int[] dp = new int[target + 1];for (int i = 0; i < n; i++) {for (int j = target; j >= nums[i]; j--) {dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}if(dp[target] == target) return true;} return dp[target] == target;}   
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/491314.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】多态概念(入门)

介绍&#xff1a; 多态的概念&#xff1a;通俗来说&#xff0c;多态就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态。比如扫红包操作&#xff0c;同样是扫码动作&#xff0c;不同的用户扫 得到的不一样的红包&#xff0…

【卷积神经网络中用1*1 卷积有什么作用或者好处呢?】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;深度学习 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 1*1 卷积有什么作用或者好处呢 作用降维和增加非线性特征组合和交互网络的宽度和深度调整全连接替代增强…

Rust升级慢,使用国内镜像进行加速

背景 rustup 是 Rust 官方的跨平台 Rust 安装工具&#xff0c;国内用户使用rustup update的时候&#xff0c;网速非常慢&#xff0c;可以使用国内的阿里云镜像源来进行加速 0x01 配置方法 1. Linux与Mac OS用户配置环境变量 修改~/.bash_profile文件添加如下内容&#xff1…

Vue26 内置标签 v-text v-html

实例 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>v-text指令</title><!-- 引入Vue --><script type"text/javascript" src"../js/vue.js"></script></head><…

苍穹外卖项目微信支付(没有商户号)的解决方法,超详细!!!

今天在写苍穹外卖项目时&#xff0c;写到微信支付时发现个人无法获取商户号&#xff0c;那么今天我就在这里分享一个方法&#xff0c;可以绕过微信支付实现订单支付的功能。本方法仅仅是绕过微信支付&#xff0c;没有进行真正的微信支付&#xff0c;如果想要体验真正的微信支付…

【并发】CAS原子操作

1. 定义 CAS是Compare And Swap的缩写&#xff0c;直译就是比较并交换。CAS是现代CPU广泛支持的一种对内存中的共享数据进行操作的一种特殊指令&#xff0c;这个指令会对内存中的共享数据做原子的读写操作。其作用是让CPU比较内存中某个值是否和预期的值相同&#xff0c;如果相…

“点击查看显示全文”遇到的超链接默认访问的问题

今天在做一个例子&#xff0c;就是很常见的点击展开全文。 我觉得这是一个很简单的效果&#xff0c;也就几行代码的事&#xff0c;结果点击了以后立刻隐藏不见&#xff0c;控制台代码也不报错&#xff0c;耽误了我很长时间&#xff0c;最后才发现问题出在超链接身上。 “展开全…

Escalate_Linux-环境变量劫持提权(5)

环境变量劫持提权 在Shll输入命令时&#xff0c;Shel会按PAH环境变量中的路径依次搜索命令&#xff0c;若是存在同名的命令&#xff0c;则执行最先找到的&#xff0c;若是PATH中加入了当前目录&#xff0c;也就是“”这个符号&#xff0c;则可能会被黑客利用&#xff0c;例如在…

flink源码分析 - 获取调用位置信息

flink版本: flink-1.11.2 调用位置: org.apache.flink.streaming.api.datastream.DataStream#flatMap(org.apache.flink.api.common.functions.FlatMapFunction<T,R>) 代码核心位置: org.apache.flink.api.java.Utils#getCallLocationName() flink算子flatmap中调用了一…

[力扣 Hot100]Day35 LRU 缓存

题目描述 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键字的值&#xff0c;否…

python_pyecharts绘制漏斗图

python-pyecharts绘制漏斗图 from pyecharts.charts import Funnel from pyecharts import options as opts# 数据 data [("访问", 100), ("咨询", 80), ("订单", 60), ("点击", 40), ("展现", 20)]# 创建漏斗图 funnel …

【论文解读】transformer小目标检测综述

目录 一、简要介绍 二、研究背景 三、用于小目标检测的transformer 3.1 Object Representation 3.2 Fast Attention for High-Resolution or Multi-Scale Feature Maps 3.3 Fully Transformer-Based Detectors 3.4 Architecture and Block Modifications 3.6 Improved …